作业帮 > 数学 > 作业

如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:B

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:38:37
如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:BE=CG.
如图,在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.求证:B
证明:过点A作AP⊥BC于点P,∠APB=90°,
∵AB=AC,
∴∠BAP=∠PAC,
∵CD⊥AB,
∴∠B+∠BCD=180°-∠CDB=90°,
∵∠B+∠BAP=180°-∠APB=90°,
∴∠BAP=∠PAC=∠BCD,
∵CE平分∠DCA,
∴∠ACE=∠ECD,
∵∠APC+∠PCA+∠PAC=180°,
∴∠ACE+∠DCE+∠PCD+∠PAC=90°
∴2(∠BCD+∠ECD)=90°,
∴∠BCE=45°,
∵EF⊥BC,
∴∠EFC=90°
∴∠FEC=180°-∠EFC-∠ECF=45°,
∴∠FEC=∠ECF,
∴EF=FC,
∵EF⊥BC,
∴∠EFC=∠APC=90°,
∴EF∥AP,
∴∠BEF=∠BAP=∠BCD,
∵EF⊥BC,
∴∠BFE=∠EFC=90°,
∵在△BFE和△GFC中,

∠BEF=∠FCG
EF=FC
∠EFB=∠CFG,
∴△BFE≌△GFC(ASA),
∴BE=CG.