I为三角形ABC内心,且A’、B’、C’分别为三角形IBC、ICA、IAB的外心,求证,三角形ABC与三角形A’B’C’
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 09:36:23
I为三角形ABC内心,且A’、B’、C’分别为三角形IBC、ICA、IAB的外心,求证,三角形ABC与三角形A’B’C’有相同的外心.
请给出完整的推理过程.
请给出完整的推理过程.
此题分两种情况:
一、当三角形ABC为等边三角形时:
因为A’、B’、C’分别为三角形IBC、ICA、IAB的外心,所以,作图可以知道,A’B=A’C=A’I B’A=B’C=B’I C’A=C’B=C’I
又因为I为三角形ABC内心,可以知道IA=IB=IC
根据三角形法则,可以证明出A’B=A’C=A’I=B’A=B’C=B’I=C’A=C’B=C’I 即 A’I=B’I=C’I 由外心定义可知,圆I为三角形A’B’C’的外心
又因为I为三角形ABC外心,所以三角形ABC与三角形A’B’C’有相同的外心.
二、当三角形ABC为不规则三角形时:
因为A’、B’、C’分别为三角形IBC、ICA、IAB的外心,所以,作图可以知道,A’B=A’C=A’I B’A=B’C=B’I C’A=C’B=C’I
又因为I为三角形ABC内心,可以知道IA=IB=IC
做辅助直角三角形,用直角三角形定理可以求得A’B=A’C=A’I=B’A=B’C=B’I=C’A=C’B=C’I 即 A’I=B’I=C’I 由外心定义可知,圆I为三角形A’B’C’的外心
又因为I为三角形ABC外心,所以三角形ABC与三角形A’B’C’有相同的外心.
一、当三角形ABC为等边三角形时:
因为A’、B’、C’分别为三角形IBC、ICA、IAB的外心,所以,作图可以知道,A’B=A’C=A’I B’A=B’C=B’I C’A=C’B=C’I
又因为I为三角形ABC内心,可以知道IA=IB=IC
根据三角形法则,可以证明出A’B=A’C=A’I=B’A=B’C=B’I=C’A=C’B=C’I 即 A’I=B’I=C’I 由外心定义可知,圆I为三角形A’B’C’的外心
又因为I为三角形ABC外心,所以三角形ABC与三角形A’B’C’有相同的外心.
二、当三角形ABC为不规则三角形时:
因为A’、B’、C’分别为三角形IBC、ICA、IAB的外心,所以,作图可以知道,A’B=A’C=A’I B’A=B’C=B’I C’A=C’B=C’I
又因为I为三角形ABC内心,可以知道IA=IB=IC
做辅助直角三角形,用直角三角形定理可以求得A’B=A’C=A’I=B’A=B’C=B’I=C’A=C’B=C’I 即 A’I=B’I=C’I 由外心定义可知,圆I为三角形A’B’C’的外心
又因为I为三角形ABC外心,所以三角形ABC与三角形A’B’C’有相同的外心.
已知三角形ABC相似与三角形A1B1C1,相似比为K,且三角形ABC的三边长分别是a,b,c(a》b》c),三角形
已知点O为三角形ABC的外心,角A,B,C的对边分别为a,b,c.
已知三角形ABC的三边长分别为a,b,c,且a,b,c满足
设a、b、c分别为三角形ABC内角A、B、C的对边,且a平方=b(b+c),求证A=2B
若三角形ABC的三边a、b、c成等差数列且a小于b小于c,G为三角形ABC的重心I为三角形的内心,O是平面内任意一点
已知:a,b,c为三角形ABC的三条边,且使a^3+b^3+c^3=3abc求证:三角形ABC为等边三角形
已知三角形ABC的三条鞭分别为a,b,c
设a、b、c为三角形ABC的三边长,且满足a³+b³+c³=3abc,求证三角形ABC是正
在三角形ABC中,三个内角A,B,C的对边分别为a.b.c且A,B,C成等差数列.a.b.c成等比数列,求证三角形ABC
已知c(a-b)+b(b-a)=0,其中a,b,c分别为三角形ABC的三边长,且判断三角形ABC的形状.
已知三角形ABC的三个内角A,B,C成等差数列,且三个内角A,B,C的对边分别为a,b,c,求证
已知三角形ABC的周长为27,a,b,c分别为三角形ABC的三边长,且b+c等于2a,c等于二分