作业帮 > 数学 > 作业

f(x)=alnx+0.5X2(a>0),若对任意两个不等的正实数X1,X2都有f(X1)-f(x2)/X1-X2>2恒

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 05:21:18
f(x)=alnx+0.5X2(a>0),若对任意两个不等的正实数X1,X2都有f(X1)-f(x2)/X1-X2>2恒成立,则a的取值范围
A.[1,+∞) B.(1,+∞) C.(0,1) D.(0,1]
为什么不选B
f(x)=alnx+0.5X2(a>0),若对任意两个不等的正实数X1,X2都有f(X1)-f(x2)/X1-X2>2恒
要使f(X1)-f(x2)/X1-X2>2恒成立,只需f(x)的导数恒大于2
f'(x)=a/x+x>2
而a/x+x》2a 所以a>1
而当a=1时,f(x)=lnx+x2
f'(x)=1/x+x》2,当且仅当X1=X2=1时才取等号,而条件中是要求任意两个不等的正实数X1,X2
所以‘=’取不到,