高数重积分的问题∫(0→1)dx∫(0→x)dy∫(0→y)f(z)dz=1/2∫(0→1)(1-z)^2f(z)dz
高数重积分的问题∫(0→1)dx∫(0→x)dy∫(0→y)f(z)dz=1/2∫(0→1)(1-z)^2f(z)dz
将∫(0,1)dx∫(0,1-x)dy∫(0,x+y)f(x,y,z)dz按y,z,x的次序积分为?
求由方程组x+y+z=0;x^2+y^2+z^2=1所确定的函数的倒数dx/dz,dy/dz
f(x,y,z)=0,z=g(x,y),求dy/dx,dz/dx
X^Z=Z^Y求dz; ∫ (上-1下-2)dx∫(上1-x下x-1)f(x,y)dy改积分区域
∫(L的换积分)(y-z)dx+(z-x)dy+(x-y)dz,L为x^2+y^2+z^2=1与(x-1)^2+(y-1
设函数f(x)在[0,1]上连续,证明:∫(0->1)dx∫(0->1)dy∫(x->y)f(x)f(y)f(z)dz=
三重积分∫dx ∫dy ∫sin z /(1 -z )dz 等于多少……在d x 上的积分区域是从0 到1 ,d y上是
∫(y+1)dx+(z+2)dy+(x+3)dz,L是球面x2+y2+z2=a2与平面x+y+z=0的交线,从x抽正向看
设由方程x-z-yf(z)=0所确定的隐函数g(x,y),其中f可导,求dz/dx dz/dy
设Z=f(x^2 +y,2xy),求dz/dx和dz/dy
求第二类曲线积分∫(封闭的哈 我打不粗来)(z-y)dx+(x-z)dy+(x-y)dz,Γ是曲线x^2+y^2=1,x