曲面积分zxdxdy+xydydz+yzdzdxξ是坐标轴和x+y+z=1所围成的区域外围
曲面积分zxdxdy+xydydz+yzdzdxξ是坐标轴和x+y+z=1所围成的区域外围
求三重积分∫∫∫(x^2+y^2)dxdydz 曲面是x^2+y^2=z^2 和z=2围成的区域
计算三重积分∫∫∫z^2dv,其中Ω是曲面z=(x^2+y^2)^(1/2),z=1,z=2所围成的区域
计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等
求曲面∫∫(x^2+y^2)ds的积分,∑是锥面z=✔(x^2+y^2)及平面z=1所围成的区域的整个边界
原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.
求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面
计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.
计算三重积分 ∫∫∫Ωdv,其中Ω是由曲面x^2+y^2=2z及平面z=2平面所围成的闭区域
计算三重积分 ∫∫∫zdv,其中Ω是由曲面x^2+y^2=2z与平面z=2平面所围成的闭区域.
三重积分求下面曲面所围成的区域体积 z=x^2+y^2,z=2x^2+y^2,y=x,y=x^2
三重积分计算由曲面Z=(X^2+Y^2)^0.5和曲面Z=(X^2+Y^2)所围成的立体体积的三次积分!写出积分表达式就