f(x)不是常函数,且是周期函数,能不能没有最小正周期
证明:连续周期函数,如果没有最小正周期则必为常值函数.
周期函数 fx是定义在R上的奇函数,且f(x-2)是偶函数,求函数最小正周期
周期函数f(x)是定义在R上的奇函数,且最小正周期为3,f(1)
已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x的三次方-x,则函数y=f(x)的图像在区间
定义域在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π.且当x∈[0,π/2]时,f(x)=sin
定义域在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,π/2]时,f(x)=sin
定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x属于{0.π/2}时f(x)=sinx
定义域在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π.且当x∈[0,π/2]时,f(x)=sin
定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π/2,且当x∈[0,π/4]时,f(x)=si
定义在R上的函数f(x)是偶函数和周期函数.若f(x)的最小正周期是π,且当x∈[0,π/2]时,f(x)=sinx,求
定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,π2]时,f(x)=sinx
定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0.π/2]时f(x)=sinx.