等差数列中,为什么a1+a(2n-1)=2a(n) 不应该是:根据1+2n-1=2n得 a1+a(2n-1)=a(2n)
设a1=1,a n+1=a n + 1/2,则数列{a n}的前n项之和为 A.(n^2+3n)/2 B.(n^2+n)
在数列{an}中,a1=3,an=-a(n-1)-2n-1(n大等于2,且n属于N正)
数列题求通项a1+2a2+...+nan=n(n+1)(n+2)a1+2a2+..+(n-1)a(n-1)=(n-1)n
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)
a1=1/4 ,a(n)=a(n-1)/{[(-1)^n]×a(n-1)-2} (n≥2,n∈N)
数列证明,求通项公式已知数列{an}中,a1=1/3,an*a(n-1)=a(n-1)-an(n>=2,n属于正整数),
设正整数列a0,a1,...,an,...满足√【an*a(n-2)】-√【a(n-1)*a(n-2)】=2a(n-1)
在等差数列{an}中,a1=1,前n项和Sn满足条件S(2n)/Sn=(4n+2)/(n+1)(n=1,2,……)求{a
等差数列、等比数列1、数列{a n}中,a1=1,当n≥2,其前n项和S n满足(S n)^2=a n (S n -1/
数列{an}中,a1=2,a(n+1)=a(n)+2n.(1)求{an}的通项公式(2)若a(n)+3n-2=2/b(n
若数列{an},a1=2/3,且a(n+1)=an+1/【(n+2)(n+1)】,(n∈N+)则通项an=?
求数列通项公式!a[n]=(n-1)(n-1)a[n-2]+(n-1)(n-2)a[n-3]a1=0a2=1a3=2a4