若直线mx+2ny-4=0(m,n∈R)将圆x2+y2-4x-2y-4=0分成两段相等的弧,则m+n等于( )
已知直线mx+ny=2,(m>0,n>0)平分圆x2+y2-2x-4y+4=0的周长,则1m+2n
已知圆x2+y2+4x+2y+1=0上任意点关于直线mx+ny+1=0(m>0,n>0)的对称点均在圆上,则1m+1n
已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长
对任意实数λ,直线l1:x+λy-m-λn=0与圆C:x2+y2=r2总相交于两不同点,则直线l2:mx+ny=r2与圆
若直线mx+2ny-4(m、n属于全体实数)始终平分圆x^2+y^2-4x-2y-4=0的周长,则mn的取值范围是( )
已知直线mx+ny=6平分圆x^2+y^2-8x-4y+14=0,其中m>0,n>0,则2/m+1/n的最小值为?
已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0.
(已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0
若实数m,n,x,y满足m2+n2=a,x2+y2=b,则mx+ny的最大值( )
若实数m,n,x,y满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为 用基本不等式
设集合M={x|y2=3x,x∈R},N={y|x2+y2=4,x∈R,y∈R},则M∩N等于( )
已知圆(x+2)2+(y+1)2=4上有两点P,Q关于直线mx+ny+1=0对称,m>0,n>0,则1/m+2/n的最小