作业帮 > 数学 > 作业

若集合A={0<ax-1≦5},集合B={x/-½<x≦2},有A-B=⊙,求实数a的取值范围.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 05:03:57
若集合A={0<ax-1≦5},集合B={x/-½<x≦2},有A-B=⊙,求实数a的取值范围.
若集合A={0<ax-1≦5},集合B={x/-½<x≦2},有A-B=⊙,求实数a的取值范围.
∵A-B=空集
∴A是B的子集
0<ax-1≤5
1<ax≤6
当a>0时,A={x|1/a<x≤6/a},1/a≥-1/2且6/a≤2,解得a≥3
当a=0时,A=空集,A属于B,符合题意
当a<0时,A={x|6/a≤x<1/a},6/a>-1/2且1/a≤2,解得a<-12
综上,
a的取值范围是a≥3或a=0或a