如图,在△ABC中,AB=AC,点D、E分别在AC、AB上,且∠ABD=∠ACE,BD、CE相交于点O,问:(1)OB和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:35:57
如图,在△ABC中,AB=AC,点D、E分别在AC、AB上,且∠ABD=∠ACE,BD、CE相交于点O,问:(1)OB和OC有什么关
为什么?(2)若想连结OA,直线OA与BC有什么关系?试说明理由(3)试说明四边形DEBC是等腰梯形
为什么?(2)若想连结OA,直线OA与BC有什么关系?试说明理由(3)试说明四边形DEBC是等腰梯形
(1)OB=OC.
证明:AB=AC,则:∠ABC=∠ACB.
∵∠ABD=∠ACE.
∴∠ABC-∠ABD=∠ACB-∠ACE,即∠OBC=∠OCB,得OB=OC.
(2)AO的延长线垂直平分BC.
证明:∵AB=AC;OB=OC;AO=AO.
∴⊿ABD≌⊿ACE(SSS),点O到AB和AC的距离相等.
(全等三角形对应边上的高相等).
∴∠BAO=∠CAO.(到角两边距离相等的点在这个角的平分线上)
∴AO的延长线垂直平分BC.(等腰三角形"三线合一")
(3)证明:∵⊿ABD≌⊿ACE(已证).
∴BD=CE;AD=AE,∠AED=∠ADE;又∠ABC=∠ACB,∠EAD=∠BAC.
∴∠AED=∠ABC,得ED∥BC.
又BD=CE;DE≠BC.故四边形DEBC为等腰梯形.
证明:AB=AC,则:∠ABC=∠ACB.
∵∠ABD=∠ACE.
∴∠ABC-∠ABD=∠ACB-∠ACE,即∠OBC=∠OCB,得OB=OC.
(2)AO的延长线垂直平分BC.
证明:∵AB=AC;OB=OC;AO=AO.
∴⊿ABD≌⊿ACE(SSS),点O到AB和AC的距离相等.
(全等三角形对应边上的高相等).
∴∠BAO=∠CAO.(到角两边距离相等的点在这个角的平分线上)
∴AO的延长线垂直平分BC.(等腰三角形"三线合一")
(3)证明:∵⊿ABD≌⊿ACE(已证).
∴BD=CE;AD=AE,∠AED=∠ADE;又∠ABC=∠ACB,∠EAD=∠BAC.
∴∠AED=∠ABC,得ED∥BC.
又BD=CE;DE≠BC.故四边形DEBC为等腰梯形.
如图在三角形ABC中,AB=AC,点D、E分别在边AC,AB上,且角ABD=角ACD,BD与CE相交于点O,求证OB=O
如图,在△ABC中,点D、E分别在边AC和AB上,且AD=AE,∠ACE=∠ABD,BD与CE交于点P,试判断△PBC的
已知:如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,BD与CE相交于点O,且BD=CE.求证:OB=OC
如图,在△ABC中,∠A=50°,AB>AC,D、E分别在AB、AC上,且BD=CE,BE、CD相交于O点,∠BCD=∠
如图 在三角形ABC中 AB=AC,点E,D分别在AB,AC上,BD,CE相交于O,BE=CD.
在三角形ABC中,点D.E分别在边AC和AB上,且AD=AE,角ACE=角ABD,BD与CE交于点P是判断三角形PBC的
如图在△ABC中,D,E分别是AC,AB上的点,且有AD=AE,CD=BE,BD与CE相交于点O. 求证△AEC全等于△
如图,三角形ABC中是等边三角形,D,E分别在边AB,AC上且BD=CE,AD、BE相交于点P,则角APE=?
已知如图在△abc中,bd⊥ac,ce⊥ab,垂足分别为d,e,bd,ce相交于点o [1]∠a=50°,求∠boc [
如图,在△ABC中,AB=AC,∠ABD=∠ACE,BD,CE相交于点O,猜想:BO=CO成立吗?并说明理由.
如图,在等边三角形abc中,点d,e分别在ab,ac上,且ad等于ce,be和cd相交于点p,求∠bpd
已知:如图,△ABC中,AB=AC,BD、CE分别是AC、AB边上的中线,BD、CE相交于点O.求证:OB=OC