数学归纳法题 rt设{an}^∞n=1为一正数列,使得a1+·····+an=an^2+3an-4/6,n=1,3···
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 05:00:53
数学归纳法题 rt
设{an}^∞n=1为一正数列,使得a1+·····+an=an^2+3an-4/6,n=1,3····· 用数学归纳法证明
an=3n+1,n=1,2,3
设{an}^∞n=1为一正数列,使得a1+·····+an=an^2+3an-4/6,n=1,3····· 用数学归纳法证明
an=3n+1,n=1,2,3
首先 n=1 时,a1=a1^2+3a1-4)/6 a1=4 或者-1 由于 an时正数列 =>a1=4=3*1+1
设 k=n 时有 ak=3k+1
那么 a1+·····+ak+ak+1=(ak+1^2+3ak+1-4)/6
a1+·····+ak=ak^2+3ak-4/6
=> ak^2+3ak-4/6+ak+1=(ak+1^2+3ak+1-4)/6
(3n+1)^2+3(3n+1)-4)/6+an+1=(ak+1^2+3ak+1-4)/6
ak+1^2-3ak+1-(3k+4)(3k+1)=0 ( ak+1-(3k+4))*( ak+1+(3k+1))=0
ak+1=3k+4 或者 =-3k-1 由于时正数列 => an+1 =3(n+1)+1
所以当n=k+1时也有 an=3n+1
所以对于任意的n 属于N+ 都有 an=3n+1
设 k=n 时有 ak=3k+1
那么 a1+·····+ak+ak+1=(ak+1^2+3ak+1-4)/6
a1+·····+ak=ak^2+3ak-4/6
=> ak^2+3ak-4/6+ak+1=(ak+1^2+3ak+1-4)/6
(3n+1)^2+3(3n+1)-4)/6+an+1=(ak+1^2+3ak+1-4)/6
ak+1^2-3ak+1-(3k+4)(3k+1)=0 ( ak+1-(3k+4))*( ak+1+(3k+1))=0
ak+1=3k+4 或者 =-3k-1 由于时正数列 => an+1 =3(n+1)+1
所以当n=k+1时也有 an=3n+1
所以对于任意的n 属于N+ 都有 an=3n+1
设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+a
设数列{an}满足a1=2,an+1-an=3·2^(2n-1)
设数列【an】满足a1=1,3(a1+a2+a3+······+an)=(n+2)an,求通项an
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
设数列{an},a1=2,a(n+1)=an+In·(1+1/n),求an
设 数列an满足a1=2,a(n+1)-an=3·2^(2n-1) (1)求数列an 的通项公式
数列{an}中,a1+a2+a3···+an=2n+1(n∈N※),求an
设Sn为数列{an}的前n项和,已知a1≠o,2an-a1=S1·Sn(n∈N+) (1).求a1、a2,并求an(2)
数学归纳法证明数列数列{an}满足a=1且对任意的n∈N*都有8an·(an+1)-16(an+1)+2an+5=0,记
已知数列{an}中,a1=1,an=an-1·3^(n-1)(n≥2),设函数f(n)=log3an/9^n(n∈N*)
数列{an}中,a1=0,a2=3,a3=2,且an≥0,an+1·an=(an-1+2)(an-2+2)(n≥3,n∈
设a1,a2,a3,…,an(n∈N*)都是正数,且a1a2a3•…an=1,试用数学归纳法证明:a1+a2+a3+…+