已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 02:04:09
已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt要将f(1/2t)里的1/2t看成是u变为 2du 那原式是变为 f(x)=2∫(0→2x)f(u)du ,在求导吗,那就等于 4f(x),但答案是2f(x).
很简单,有求变上限积分的求导公式
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t)dt
急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),先问f(1/2t
f(x)连续且f(x)=x+(x^2)∫ (0,1)f(t)dt,求f(x)
急求:已知f(x)在(-∞,+∞)内连续,且f(x)=∫(0→2x)f(1/2t)dt,则f '(x),的问题
请问高数题 设f(x)在(-∞,+∞)内连续,F(x)=∫(上限x,下限0) (2t-x)f(t)dt.求证:有相同单调
设f(x)在[0,+∞)上连续,且∫(0,x)f(t)dt=x(1+cosx),则f(x)=?
已知f(x)为一次函数,且f(x)=x ∫ 2 0 f(t)dt+1,则 ∫ 1 -1 f(x)dx=( )
已知f(x)为一次函数,且f(x)=x+2∫[0,1]f(t)dt,则f(x)=
①设f(x)=x+2∫(0,1)f(t)dt,求f(x).
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
f(x)连续,g(x)=∫ t^2f(t-x)dt,求g'(x)
已知,f(x)=1/2x^2+∫(0-x) f(t)dt,求f(x)