辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 01:17:53
辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求
辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求tanAcotB的值;(2)求tan(A-B)的最大值
辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求tanAcotB的值;(2)求tan(A-B)的最大值
(1)由正弦定理可知:a/sinA=b/sinB=c/sinC=2R,R为三角形外接圆的半径.
则acosB-bcosA=3c/5可化为:sinAcosB-sinBcosA=3sinC/5
且sinC=sin(180-A-B)=sin(A+B)=sinAcosB+sinBcosA
sinAcosB-sinBcosA=3(sinAcosB+sinBcosA)/5 两边同时除以cosAsinB,即可求出tanAcotB的值(tanAcotB=sinAcosB/cosAsinB)
(2)由sinAcosB-sinBcosA=3(sinAcosB+sinBcosA)/5得sin(A-B)=3sin(A+B)/5
又tan(A+B)=(tanA+tanB)/(1-tanAtanB)=sin(A+B)/cos(A-B)
又sin(A-B)=3sin(A+B)/5得cos(A-B)=4sin(A+B)/5或-4sin(A+B)/5
所以,tan(A+B)的最大值为5/4
则acosB-bcosA=3c/5可化为:sinAcosB-sinBcosA=3sinC/5
且sinC=sin(180-A-B)=sin(A+B)=sinAcosB+sinBcosA
sinAcosB-sinBcosA=3(sinAcosB+sinBcosA)/5 两边同时除以cosAsinB,即可求出tanAcotB的值(tanAcotB=sinAcosB/cosAsinB)
(2)由sinAcosB-sinBcosA=3(sinAcosB+sinBcosA)/5得sin(A-B)=3sin(A+B)/5
又tan(A+B)=(tanA+tanB)/(1-tanAtanB)=sin(A+B)/cos(A-B)
又sin(A-B)=3sin(A+B)/5得cos(A-B)=4sin(A+B)/5或-4sin(A+B)/5
所以,tan(A+B)的最大值为5/4
辅导求答案:设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 (1)求
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=4c/5,则tanA/tanB多少
设三角形ABC的内角A.B.C所对边长分别为a.b.c,且acosB-bcosA=4/5c,则tanA/tanB的值
一道数学题:设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.
设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=(3/5)c.(1)试求tanA/tan
设三角形ABC的内角A,B,C所对的边为a,b,c,且acosB-bcosA=b+c 1求A
设三角行ABC的内角A.B.C所对的边长分别为a.b.c且aCosB-bCosA=3/5c
设三角形ABC的内角A,B,C所对的边分别为a,b,c,且acosB-bcosA=3/5
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB=3,bsinA=4.求边长A
设三角形ABC的内角A,B,C所对的边 长分别为a,b,c,且acosB-bcosA=1/2c.求tanA/tanB的值
设三角形ABC,所对三边长分别为a,b,c且acosB-bcosA=3/5c,求tan(A-B)最大值
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且sinB=4/5,acosB=3.(1)求边长a(2)若三角