已知An(an,bn)是曲线y=(e)^x上的点,Sn是数列{an}的前n项和,并且满足an0,a1=a,(Sn)^2=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:37:18
已知An(an,bn)是曲线y=(e)^x上的点,Sn是数列{an}的前n项和,并且满足an0,a1=a,(Sn)^2=3(n^2)an+(Sn-1)^2 (n>=2)
1)设f(n)=Sn+S(n-1) (n>=2),求f(n)
2)设Cn=(bn+3)/(bn+1),求数列{Cn}的通项公式
3)当{an}是单调递增数列时,求实数a的取值范围
1)设f(n)=Sn+S(n-1) (n>=2),求f(n)
2)设Cn=(bn+3)/(bn+1),求数列{Cn}的通项公式
3)当{an}是单调递增数列时,求实数a的取值范围
(1)
由:(Sn)^2=3(n^2)an+(S(n-1))^2 (n>=2)
3(n^2)an=(Sn)^2-(S(n-1))^2=an(S(n)+S(n-1))
所以 f(n)=S(n)+s(n-1)=3(n^2)
(2)
S(n)+s(n-1)=3(n^2) (1)
S(n+1)+s(n)=3((n+1)^2) (2)
(2)-(1)得:
a(n+1)+an=3(2n+1) (3)
an+a(n-1)=3(2n-1) (4)
(3)-(4)得:
a(n+1)-a(n-1)=6
所以 Cn=e^a(n+3)/e^a(n+1)
=e^(a(n+3)-a(n_1))
=e^6
(3)
a1=a
(Sn)^2=3(n^2)an+(Sn-1)^2 n=2 时
得a2=12-2a (a2>0)
应有:
0
由:(Sn)^2=3(n^2)an+(S(n-1))^2 (n>=2)
3(n^2)an=(Sn)^2-(S(n-1))^2=an(S(n)+S(n-1))
所以 f(n)=S(n)+s(n-1)=3(n^2)
(2)
S(n)+s(n-1)=3(n^2) (1)
S(n+1)+s(n)=3((n+1)^2) (2)
(2)-(1)得:
a(n+1)+an=3(2n+1) (3)
an+a(n-1)=3(2n-1) (4)
(3)-(4)得:
a(n+1)-a(n-1)=6
所以 Cn=e^a(n+3)/e^a(n+1)
=e^(a(n+3)-a(n_1))
=e^6
(3)
a1=a
(Sn)^2=3(n^2)an+(Sn-1)^2 n=2 时
得a2=12-2a (a2>0)
应有:
0
已知An(an,bn)是曲线y=(e)^x上的点,Sn是数列{an}的前n项和,并且满足an0,a1=a,(Sn)^2=
已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+
已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列{an}的前n项和为sn,点(n,Sn)在函数y=x^2的图像上,数列{bn}满足bn=6bn-1+2^(n+1
已知数列{an}的前n项的和Sn,满足6Sn=an2+3an+2且an>0.(1)求首项a1;(2)证明{an}是
设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2.设bn=A(n+1)-2an,求证bn是等比数列
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列
1.已知数列{an}是等差数列,a1=2,a1+a2+a3=12,令bn=3^an,求数列{bn}的前n项和Sn.
已知数列{an}的前n项为Sn,点(n,Sn)在函数f(x)=2^x-1的图像上,数列{bn}满足