质能公式E=mc²是怎么推算出来的.
来源:学生作业帮 编辑:大师作文网作业帮 分类:物理作业 时间:2024/11/10 20:16:00
质能公式E=mc²是怎么推算出来的.
首先要认可狭义相对论的两个假设:1、任一光源所发之球状光在一切惯性参照系中的速度都各向同性总为c.2、所有惯性参考系内的物理定律都是相同的.如果你的行走速度是v,你在一辆以速度u行驶的公车上,那么当你与车
爱因斯坦质能方程
同向走时,你对地的速度为u+v,反向时为u-v,你在车上过了1分钟,别人在地上也过了1分钟——这就是我们脑袋里的常识.也是物理学中著名的伽利略变换,整个经典力学的支柱.该理论认为空间是独立的,与在其中运动的各种物体无关,而时间是均匀流逝的,线性的,在任何观察者来看都是相同的.而以上这个变换恰恰与狭义相对论的假设相矛盾.事实上,在爱因斯坦提出狭义相对论之前,人们就观察到许多与常识不符的现象.物理学家洛伦兹为了修正将要倾倒的经典物理学大厦,提出了洛伦兹变换,但他并不能解释这种现象为何发生,只是根据当时的观察事实写出的经验公式——洛伦兹变换——而它却可以通过相对论的纯理论推导出来.然后根据这个公式又可以推导出质速关系,也就是时间会随速度增加而变慢,质量变大,长度减小.一个物体的实际质量为其静止质量与其通过运动多出来的质量之和.
质能方程当外力作用在静止质量为m0的自由质点上时,质点每经历位移ds,其动能的增量是dEk=F·ds,如果外力与位移同方向,则上式成为dEk=Fds,设外力作用于质点的时间为dt,则质点在外力冲量Fdt作用下,其动量增量是dp=Fdt,考虑到v=ds/dt,有上两式相除,即得质点的速度表达式为v=dEk/dp,亦即 dEk=vd(mv)=V2dm+mvdv,把爱因斯坦的质量随物体速度改变的那个公式平方,得m2(c2-v2)=m02c,对它微分求出:mvdv=(c2-v2)dm,代入上式得dEk=c2dm.上式说明,当质点的速度v增大时,其质量m和动能Ek都在增加,质量的增量dm和动能的增量dEk之间始终保持dEk=c2dm所示的量值上的正比关系.当v=0时,质量m=m0,动能Ek=0,据此,将上式积分,即得∫Ek0dEk=∫m0m c2dm(从m0积分到m)Ek=mc2-m0c2 上式是相对论中的动能表达式.爱因斯坦在这里引入了经典力学中从未有过的独特见解,他把m0c2叫做物体的静止能量,把mc2叫做运动时的能量,我们分别用E0和E表示:E=mc,,E=mc.推导:首先是狭义相对论得到 洛伦兹因子γ=1/sqrt(1 - v2/c2) 所以,运动物体的质量 M(v) = γm0=m0/(1 - v2/c2) 然后利用泰勒展开 1/sqrt(1 - v2/c2)=1+1/2*v2/c2+.得到M(v)c2 = γm0c2=m0c2/(1 - v2/c2)=m0c2+1/2m0v2+...其中m0c2为静止能,1/2m0v2就是我们平时见到的在低速情况下的动能,后面的省略号是高阶的能量.
爱因斯坦质能方程
同向走时,你对地的速度为u+v,反向时为u-v,你在车上过了1分钟,别人在地上也过了1分钟——这就是我们脑袋里的常识.也是物理学中著名的伽利略变换,整个经典力学的支柱.该理论认为空间是独立的,与在其中运动的各种物体无关,而时间是均匀流逝的,线性的,在任何观察者来看都是相同的.而以上这个变换恰恰与狭义相对论的假设相矛盾.事实上,在爱因斯坦提出狭义相对论之前,人们就观察到许多与常识不符的现象.物理学家洛伦兹为了修正将要倾倒的经典物理学大厦,提出了洛伦兹变换,但他并不能解释这种现象为何发生,只是根据当时的观察事实写出的经验公式——洛伦兹变换——而它却可以通过相对论的纯理论推导出来.然后根据这个公式又可以推导出质速关系,也就是时间会随速度增加而变慢,质量变大,长度减小.一个物体的实际质量为其静止质量与其通过运动多出来的质量之和.
质能方程当外力作用在静止质量为m0的自由质点上时,质点每经历位移ds,其动能的增量是dEk=F·ds,如果外力与位移同方向,则上式成为dEk=Fds,设外力作用于质点的时间为dt,则质点在外力冲量Fdt作用下,其动量增量是dp=Fdt,考虑到v=ds/dt,有上两式相除,即得质点的速度表达式为v=dEk/dp,亦即 dEk=vd(mv)=V2dm+mvdv,把爱因斯坦的质量随物体速度改变的那个公式平方,得m2(c2-v2)=m02c,对它微分求出:mvdv=(c2-v2)dm,代入上式得dEk=c2dm.上式说明,当质点的速度v增大时,其质量m和动能Ek都在增加,质量的增量dm和动能的增量dEk之间始终保持dEk=c2dm所示的量值上的正比关系.当v=0时,质量m=m0,动能Ek=0,据此,将上式积分,即得∫Ek0dEk=∫m0m c2dm(从m0积分到m)Ek=mc2-m0c2 上式是相对论中的动能表达式.爱因斯坦在这里引入了经典力学中从未有过的独特见解,他把m0c2叫做物体的静止能量,把mc2叫做运动时的能量,我们分别用E0和E表示:E=mc,,E=mc.推导:首先是狭义相对论得到 洛伦兹因子γ=1/sqrt(1 - v2/c2) 所以,运动物体的质量 M(v) = γm0=m0/(1 - v2/c2) 然后利用泰勒展开 1/sqrt(1 - v2/c2)=1+1/2*v2/c2+.得到M(v)c2 = γm0c2=m0c2/(1 - v2/c2)=m0c2+1/2m0v2+...其中m0c2为静止能,1/2m0v2就是我们平时见到的在低速情况下的动能,后面的省略号是高阶的能量.