1、点D是△ABC的边AB上一点,E是AC的中点,F是DE延长线上的一点,且DE=EF,连接CF.求证角B+角BCF=1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 16:55:51
1、点D是△ABC的边AB上一点,E是AC的中点,F是DE延长线上的一点,且DE=EF,连接CF.求证角B+角BCF=180°
2、AD⊥BC于D,AD=BD,AC=BE.猜想并说明DE和DC有何特殊关系?(已求证出△EDB≌△CDA了)
3、AC和BD相交于点O,且AB‖DC,OC=OD,求证:OA=AB.
2、AD⊥BC于D,AD=BD,AC=BE.猜想并说明DE和DC有何特殊关系?(已求证出△EDB≌△CDA了)
3、AC和BD相交于点O,且AB‖DC,OC=OD,求证:OA=AB.
1)∵E为AC中点
∴AE=CE(中线定义)
又∵DE=FE,∠AED=∠FEC
∴△AED≌△FEC(SAS)
∴∠A=∠ECF(三角形全等,对应角等)
∴AB‖FC(内错角等,两直线平行)
∴∠B+∠BFC=180°
2)DE=DC
∵AD⊥BC
∴∠ADC=BDE=90°(垂直定义)
∵AD=BD,AC=BE
∴△ADC≌△BDE(HL)
∴DE=DC
3)∵AB‖DC
∴∠C=∠A,∠D=∠B(两直线平行,内错角等)
∵OC=OD
∴∠C=∠D(等边对等角)
∴∠A=∠B(等量代换)
∴AE=CE(中线定义)
又∵DE=FE,∠AED=∠FEC
∴△AED≌△FEC(SAS)
∴∠A=∠ECF(三角形全等,对应角等)
∴AB‖FC(内错角等,两直线平行)
∴∠B+∠BFC=180°
2)DE=DC
∵AD⊥BC
∴∠ADC=BDE=90°(垂直定义)
∵AD=BD,AC=BE
∴△ADC≌△BDE(HL)
∴DE=DC
3)∵AB‖DC
∴∠C=∠A,∠D=∠B(两直线平行,内错角等)
∵OC=OD
∴∠C=∠D(等边对等角)
∴∠A=∠B(等量代换)
1、点D是△ABC的边AB上一点,E是AC的中点,F是DE延长线上的一点,且DE=EF,连接CF.求证角B+角BCF=1
如图 在三角形ABC中,D是AB上的一点,E是AC的中点,延长DE到点F,使EF=DE,连接CF.G是BC延长线上一点.
在三角形ABC中,AB=AC,D为AB的一点,F是AC的延长线上一点,且BD=CF,连接DF交BC于E,求证:DE=EF
如图回答问题如图,在△ABC中,D是AB上一点,E是AC的中点,延长DE到点F,使EF=DE,连结CF.G是BC延长线上
如图,在△ABC中,AB=AC,D为AB上一点,F是AC延长线上一点,且BD=CF,连接DF交BC于点E,求证:DE=E
如图所示,在△ABC中.D、E分别是AB、AC遍的中点,F是DE延长线上的点,且EF=DE,四边形ADCF和四边形BCF
如图所示在三角形ABC中,角CBA等于90度,D是AB的延长线上的一点,E在AB上,连接DE并延长AC于F且EF=FC
如图,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,且BE=CF,若EF与BC相交于D,求证:DE=DF
如图,在Rt△ABC中,∠ABC=90°,D是AB延长线上的一点,E在AB上,连接DE并延长交于AC于F,且EF=FC,
已知如图在△abc中d,e分别是ab,bc的中点,点f在ac的延长线上,且cf=de,求证dc∥ef
在三角形ABC中,D是AB上一点,E在AC的延长线上,DE交BC于F点,且BD=CE,DF=EF.求证:三角形ABC是等
如图,在△ABC中,D是AC上一点,F是CB的延长线上一点,且AD=BF,DF交AB于点E,证DE/EF=BC/AC