跪求初一数学论文【500字】左右 急
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/13 15:10:26
跪求初一数学论文【500字】左右 急
课堂教学是学生在校期间学习文化科学知识的主阵地,也是对学生进行思想品德教育的主渠道.现在,学校实行五天制工作,带来了一定的压力.由于每堂课的时间的减少和每门课总学时的减少,确实给教师带来了很大的麻烦,给原来教熟了的老套路、老方法提出了挑战.对于减时不减量这一矛盾,除了对教材的内容进行重新修订调整外,对教师来说,最迫切的问题,就是如何提高四十分钟的课堂教学教育的效率,尽量在有限的时间里,出色地完成教学任务.
1 有明确的教学目标
布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域.因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组.在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质.如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展.引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力.
2 能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的.为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视.讲授重点内容,是整堂课的教学高潮.教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力.如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简.教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解.为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆.画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图.学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义.这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了.在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦.这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方.教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果.这样,椭圆方程的化简这一难点也就迎刃而解了.同时也解决了将要遇到的求双曲线的标准方程时的化简问题.
3 要善于应用现代化教学手段
随着科学技术的飞速发展,三机一幕进入了寻常教室.对教师来说,掌握现代化的教学手段显得尤为重要和迫切.现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性.四是有利于对整堂课所学内容进行回顾和小结.在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点.同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容.在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成.对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容.如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示.
4 根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求.教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论.如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度.这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明.此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法.有时,在一堂课上,要同时使用多种教学方法.俗话说:“教无定法,贵要得法”.只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法.
5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学生的对所讲内容的掌握情况.如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演.有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学.
6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人.
7 处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情.如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明.教学计划中也没有证明的要求.在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答.我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因.然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈.这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲.
8 要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量.解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出.关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌.教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容.若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备.
1 有明确的教学目标
布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域.因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组.在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质.如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展.引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力.
2 能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的.为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视.讲授重点内容,是整堂课的教学高潮.教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力.如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简.教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解.为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆.画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图.学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义.这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了.在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦.这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方.教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果.这样,椭圆方程的化简这一难点也就迎刃而解了.同时也解决了将要遇到的求双曲线的标准方程时的化简问题.
3 要善于应用现代化教学手段
随着科学技术的飞速发展,三机一幕进入了寻常教室.对教师来说,掌握现代化的教学手段显得尤为重要和迫切.现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性.四是有利于对整堂课所学内容进行回顾和小结.在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点.同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容.在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成.对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容.如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示.
4 根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求.教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论.如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度.这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明.此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法.有时,在一堂课上,要同时使用多种教学方法.俗话说:“教无定法,贵要得法”.只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法.
5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学生的对所讲内容的掌握情况.如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演.有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学.
6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人.
7 处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情.如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明.教学计划中也没有证明的要求.在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答.我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因.然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈.这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲.
8 要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量.解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出.关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌.教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容.若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备.