1二次函数Y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.2已知f(2x+1)=3x+2 求f(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 03:23:10
1二次函数Y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.2已知f(2x+1)=3x+2 求f(5)3已知f(x)是一次函数,且满足3f(x+1)-2f(x—1)=2x+17,求f(x)的解析式4已知函数f(x)=根号下x+2和g(x)=5x+2,求f(3),f(a+1),f(g(x))并求函数y=f(g(x))的定义域.只要我能看出怎么做就行.
1、二次函数Y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.
f(0)=f(2)=6 说明对称轴为x=1;又最小值为4,所以顶点为(1,4),设顶点式
y=a(x-1)²+4;将(0,6)点代入,解得a=2
2、已知f(2x+1)=3x+2 求f(5)
因为f(2x+1)=3x+2
所以f(5)=f(2×2+1)=3×2+1=7
3、已知f(x)是一次函数,且满足3f(x+1)-2f(x—1)=2x+17,求f(x)的解析式
设f(x)=ax+b 则f(x+1)=a(x+1)+b f(x+1)=a(x-1)+b
代入原式 3a(x+1)+3b-2a(x-1)-2b=2x+17
ax+5a+b=2x+17
比较左右两边系数所以 a=2 5a+b=17 解得a=2,b=7
4.已知函数f(x)=根号下x+2和g(x)=5x+2,求f(3),f(a+1),f(g(x))
并求函数y=f(g(x))的定义域.
f(3)=√(3+2)=√5
f(a+1)=√(a+1+2)=√(a+3)
f(g(x))=f(5x+2)=√(5x+2+2)=√(5x+4)
f(g(x))=√(5x+4) 所以5x+4≥0,所以定义域为 [-4/5,+∞)
f(0)=f(2)=6 说明对称轴为x=1;又最小值为4,所以顶点为(1,4),设顶点式
y=a(x-1)²+4;将(0,6)点代入,解得a=2
2、已知f(2x+1)=3x+2 求f(5)
因为f(2x+1)=3x+2
所以f(5)=f(2×2+1)=3×2+1=7
3、已知f(x)是一次函数,且满足3f(x+1)-2f(x—1)=2x+17,求f(x)的解析式
设f(x)=ax+b 则f(x+1)=a(x+1)+b f(x+1)=a(x-1)+b
代入原式 3a(x+1)+3b-2a(x-1)-2b=2x+17
ax+5a+b=2x+17
比较左右两边系数所以 a=2 5a+b=17 解得a=2,b=7
4.已知函数f(x)=根号下x+2和g(x)=5x+2,求f(3),f(a+1),f(g(x))
并求函数y=f(g(x))的定义域.
f(3)=√(3+2)=√5
f(a+1)=√(a+1+2)=√(a+3)
f(g(x))=f(5x+2)=√(5x+2+2)=√(5x+4)
f(g(x))=√(5x+4) 所以5x+4≥0,所以定义域为 [-4/5,+∞)
已知F(x)为二次函数,且f(x+1)+f(x-1)=2x平方-4x+4,求f(x)的解析式
已知二次函数f(x)满足f(2-x)=f(2+x),且图象在y轴上的截距为0,最小值为-1,求函数f(x)的解析式.
已知二次函数f(x)满足f(2)=-1,f(-1)=-1.且f(x)的最大值为8,求二次函数的解析式.
已知二次函数f(x)的最小值为1,且f(0)= f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a
(1)已知f(2/x+1)=lgx,求f(x)的 解析式。 (2)若f(x)为二次函数,且f(0)=3,f(x+2)-f
1二次函数Y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.2已知f(2x+1)=3x+2 求f(
已知二次函数y=f(x),f(1)=f(-3)=0且最大值为4 (1)求函数y=f(x)的解析式 (2)当x∈[-2,2
已知f(x)为二次函数,f(0)=1,f(x+2)-f(x)=4x,求1.f(x)的解析式 2.若f(x)的定义域为(见
已知f(x)为一元二次函数,且f(x)满足条件f(x+1)+f(x-1)=2x²-4X,求f(x)的解析式
已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1 1)求f(x)的解析式 2)求f(x)在〔-1,1
已知f(x)为多项式函数,且f(x+1)+f(x-1)=2x²-2x+4.求f(x)的解析式.
函数表示法的题1.已知二次函数 f(x)满足 f(x+2)—f(x)=4x+6,且f(0)=1 ,求f(x)的解析式2.