设▲ABC的三个内角A、B、C所对的边a、b、c、且满足csinA=acosC.若根号3sinA-cos(B+π/4)的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 12:10:23
设▲ABC的三个内角A、B、C所对的边a、b、c、且满足csinA=acosC.若根号3sinA-cos(B+π/4)的最大值
求取得最大值时角A、B的大小
求取得最大值时角A、B的大小
csinA=acosC => a/c = sinA/cosC
由正弦定理 a/c = sinA/sinC
∴ sinC =cosC => ∠C = π/4
∴ ∠A + ∠B = 3π/4 ==> ∠B = 3π/4 - ∠A
3sinA - cos(B+π/4)
= 3sinA - cos( 3π/4 - A +π/4)
= 3sinA + cosA
= √10*sin(A+θ)
其中 sinθ = √10/10;tanθ = 1/3
∵ 0< tanθ < √3/3
∴ 0 < θ < π/6
∠A 的取值范围是 (0,3π/4 )
因此 3sinA - cos(B+π/4) = √10*sin(A+θ) 的最大值为√10;
无法得出 A为直角的结论,只要 C= π/4,等式就成立;
A 可在(0,3π/4 )上任意取值.
由正弦定理 a/c = sinA/sinC
∴ sinC =cosC => ∠C = π/4
∴ ∠A + ∠B = 3π/4 ==> ∠B = 3π/4 - ∠A
3sinA - cos(B+π/4)
= 3sinA - cos( 3π/4 - A +π/4)
= 3sinA + cosA
= √10*sin(A+θ)
其中 sinθ = √10/10;tanθ = 1/3
∵ 0< tanθ < √3/3
∴ 0 < θ < π/6
∠A 的取值范围是 (0,3π/4 )
因此 3sinA - cos(B+π/4) = √10*sin(A+θ) 的最大值为√10;
无法得出 A为直角的结论,只要 C= π/4,等式就成立;
A 可在(0,3π/4 )上任意取值.
设▲ABC的三个内角A、B、C所对的边a、b、c、且满足csinA=acosC.若根号3sinA-cos(B+π/4)的
已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
设△ABC内的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,已知△ABC的面积S=1/2bcsi
三角形ABC中内角ABC的对边分别为a,b,c且满足csinA=acosC,求角C的大小,
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且(2b-根号3c)cosA=根号3acosC
三角形ABC中,角A,B,C所对的边分别为a,b,c且满足csinA=acosC求
在△ABC中,角A.B.C所对的边分别是a.b.c且满足csinA=acosC,且c=2,a+b=2+2×根号2,求三角
已知,a.b.c分别为△ABC三个内角A,B,C的对边,acosC+根号3倍的acosC-b-c=0
已知在三角形ABC中,内角A,B.C所对的边分别为a,b,c且acosC+(根号3)c/2=b
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,且cos(B+C)+2sinA=1.
在三角形ABC中,a,b,c分别为内角A,B,C所对的边,且满足(2b减根号3c)cosA=根号3acosC 求A的大小
已知a,b,c分别为三角形ABC三个内角A,B,C的对边acosC+根号3asinC-b-c=o.求A