已知空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,试用向量方法证明EF是AD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 20:22:47
已知空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,试用向量方法证明EF是AD与BC的公垂线.请不要复制,分不是问题(向量符号不要写)
设向量AB=向量a,向量AC=向量b,向量AD=向量c
向量EF=AF-AE=(a+b)/2-c/2=(a+b-c)/2
向量AD=c
向量EF*向量AD=(ac+bc-c^2)/2
AB=CD,即|a|=|b-c|,平方,则a^2=b^2+c^2-2b*c
b*c=(b^2+c^2-a^2)/2
AC=BD,即|b|=|a-c|,平方,则b^2=a^2+c^2-2a*c
a*c=(a^2+c^2-b^2)/2
都代入向量EF*向量AD,整理=0
所以向量EF垂直于向量AD,即EF垂直于AD
另一个同理.所以为公垂线
注:题中的*表示向量数量积的"点".小写字母就是向量
向量EF=AF-AE=(a+b)/2-c/2=(a+b-c)/2
向量AD=c
向量EF*向量AD=(ac+bc-c^2)/2
AB=CD,即|a|=|b-c|,平方,则a^2=b^2+c^2-2b*c
b*c=(b^2+c^2-a^2)/2
AC=BD,即|b|=|a-c|,平方,则b^2=a^2+c^2-2a*c
a*c=(a^2+c^2-b^2)/2
都代入向量EF*向量AD,整理=0
所以向量EF垂直于向量AD,即EF垂直于AD
另一个同理.所以为公垂线
注:题中的*表示向量数量积的"点".小写字母就是向量
已知空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,试用向量方法证明EF是AD
如图所示,已知空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,试用向量方法证明
空间四边形ABCD,连AC、BD,若AB=CD,AC=BD,E、F分别是AD、BC的中点,用向量方法证明EF为AD、BC
设有空间四边形ABCD,对角线AC和BD的中点分别是E和F,求证:向量AB+向量CB+向量AD+向量CD=4向量EF
在空间四边形ABCD中,AB=CD,AC=BD,E.F分别是AD.BC的中点.求证:线段EF是异面直线AD,BC的中垂线
已知:如图,在四边形abcd中,ad=bc,点e,f,g,h分别是ab,cd,ac,bd的中点.求证:四边形egfh是菱
如图 ,已知四边形ABCD中,AB=CD,E,F,G,H分别是BD,AC,AD,BC的中点,求证四边形EHFG是菱形.
如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形
在空间四边形ABCD中,AD=AC=BD=BC=a,AB=CD=b,E,F分别是AB,CD的中点1.求证:EF是AB和C
已知空间四边形ABCD,连结AC,BD,设M,G分别是BC,CD的中点,则向量MG-AB+AD=?
在四边形ABCD中,AB=CD,M,N,E,F分别是AD,BC,BD,AC的中点.求证:MN⊥EF.
在四边形ABCD中,AB=CD,M,N,E,F分别是AD,BC,BD,AC,的中点,求证:MN垂直EF.