四棱锥P-abcd中,底面ABCD是边长为8的菱形,角BAD=60°,若PA=PD=5,平面PAD垂直于平面ABCD
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:58:23
四棱锥P-abcd中,底面ABCD是边长为8的菱形,角BAD=60°,若PA=PD=5,平面PAD垂直于平面ABCD
(1)求其体积(2)求证AD垂直PB(3)若E为BC中点,能否在棱PC上找一点F,使平面DEF垂直于面ABCD,证明你的结论
(1)求其体积(2)求证AD垂直PB(3)若E为BC中点,能否在棱PC上找一点F,使平面DEF垂直于面ABCD,证明你的结论
1.连接BD,并过P作PG⊥AD于G,连接GB
∵PD=PA,∴在等腰△PAD中,PG为底边AD的高,∴PG也是AD的中线,由AD=8,可得AG=AD/2=4,在Rt△PAG中,由勾股定理,以及已知的PA=5,AG=4,可求出PG=3
由于ABCD是菱形,有AD=AB,且∵∠BAD=60°,∴△BAD为等边三角形,而G为AD边中点,故BG⊥AD
于是,BG为菱形ABCD中,边AD上的高
而等边三角形ABD中,边长为8,容易求出其高BG=4√3
于是有:S菱形ABCD=AD*BG=32√3
而面PAD⊥面ABCD,AD为两面交线,且面PAD上的直线PG⊥AD于G,∴PG⊥面ABCD,PG为四棱锥P-ABCD中,底面ABCD上的高
所以,V四棱锥P-ABCD=(S菱形ABCD)*PG /3 =32√3
2.前方已经得出:PG⊥AD,BG⊥AD,PG与BG为面PBG中的相交直线,故AD⊥面PBG,而PB∈面PBG,∴有AD⊥PB
3.可找到这样的F点满足题意,而这个F点恰为PC中点,以下证明:
∵PG⊥面ABCD,PG∈面PBG,∴面PBG⊥面ABCD
而题目要求面DEF⊥面ABCD,故需要面DEF‖面PBG
要想使两面平行,需找出两对儿分别属于两面的相交直线,使它们平行即可
很容易证明△CDB为等边三角形,而E为BC中点,∴DE⊥CB
而AD‖CB,∴DE⊥AD
前方已证BG⊥AD
∴有DE‖BG
这样,已经找到了DE,BG这两条分属于面DEF与PBG上的平行线
而另外一对儿平行线,要求它们要分别与DE,BG相交,且也要平行
面PBG中选取PB的话,无疑,由于F在PC上,一定要使EF‖PB即可
而EF‖PB的话,根据比例线段的性质,可得出F为PC中点的结论
∵PD=PA,∴在等腰△PAD中,PG为底边AD的高,∴PG也是AD的中线,由AD=8,可得AG=AD/2=4,在Rt△PAG中,由勾股定理,以及已知的PA=5,AG=4,可求出PG=3
由于ABCD是菱形,有AD=AB,且∵∠BAD=60°,∴△BAD为等边三角形,而G为AD边中点,故BG⊥AD
于是,BG为菱形ABCD中,边AD上的高
而等边三角形ABD中,边长为8,容易求出其高BG=4√3
于是有:S菱形ABCD=AD*BG=32√3
而面PAD⊥面ABCD,AD为两面交线,且面PAD上的直线PG⊥AD于G,∴PG⊥面ABCD,PG为四棱锥P-ABCD中,底面ABCD上的高
所以,V四棱锥P-ABCD=(S菱形ABCD)*PG /3 =32√3
2.前方已经得出:PG⊥AD,BG⊥AD,PG与BG为面PBG中的相交直线,故AD⊥面PBG,而PB∈面PBG,∴有AD⊥PB
3.可找到这样的F点满足题意,而这个F点恰为PC中点,以下证明:
∵PG⊥面ABCD,PG∈面PBG,∴面PBG⊥面ABCD
而题目要求面DEF⊥面ABCD,故需要面DEF‖面PBG
要想使两面平行,需找出两对儿分别属于两面的相交直线,使它们平行即可
很容易证明△CDB为等边三角形,而E为BC中点,∴DE⊥CB
而AD‖CB,∴DE⊥AD
前方已证BG⊥AD
∴有DE‖BG
这样,已经找到了DE,BG这两条分属于面DEF与PBG上的平行线
而另外一对儿平行线,要求它们要分别与DE,BG相交,且也要平行
面PBG中选取PB的话,无疑,由于F在PC上,一定要使EF‖PB即可
而EF‖PB的话,根据比例线段的性质,可得出F为PC中点的结论
四棱锥P-abcd中,底面ABCD是边长为8的菱形,角BAD=60°,若PA=PD=5,平面PAD垂直于平面ABCD
如图所示,四棱锥P-ABCD中,底面ABCD为边长为2的菱形∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,
在四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD
在四棱锥P-ABCD中,底面ABCD是菱形,PA垂直平面ABCD,AB=1.角BAD=60度.求证平面PAC垂直平面PB
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于
如图,在四棱锥P-ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于
已知四棱锥P-ABCD中,PA垂直平面ABCD,底面ABCD是边长为的a菱形,角BAD=120度,PA=b (1)求:平
在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点
在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,M为PC的中点,PD=AB,求证PA平行平面MBD
四棱锥P-ABCD中,底面ABCD是角DAB=60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)A
四棱锥P-ABCD中,ABCD是正方形,侧面PAD⊥底面ABCD,PA=PD,证明平面PAB⊥平面PAD
在四棱锥P-ABCD中,底面ABCD是边长2的菱形,侧面PAD⊥底面ABCD,角BCD=60°,PA=PD=根号2,E是