如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:05:21
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)
(1)证明:连接CB,AB,CE,
∵点C为劣弧AB上的中点,
∴CB=CA,
又∵CD=CA,
∴AC=CD=BC,
∴∠ABC=∠BAC,∠DBC=∠D,
∵Rt△斜边上的中线等于斜边的一半,
∴∠ABD=90°,
∴∠ABE=90°,
即弧AE的度数是180°,
∴AE是⊙O的直径;
(2) ∵AE是⊙O的直径,
∴∠ACE=90°,
∵AE=10,AC=4,
∴根据勾股定理得:CE=2
21,
∴S阴影=S半圆-S△ACE=12.5π-
1
2×4×2
21=12.5π-4
21.
∵点C为劣弧AB上的中点,
∴CB=CA,
又∵CD=CA,
∴AC=CD=BC,
∴∠ABC=∠BAC,∠DBC=∠D,
∵Rt△斜边上的中线等于斜边的一半,
∴∠ABD=90°,
∴∠ABE=90°,
即弧AE的度数是180°,
∴AE是⊙O的直径;
(2) ∵AE是⊙O的直径,
∴∠ACE=90°,
∵AE=10,AC=4,
∴根据勾股定理得:CE=2
21,
∴S阴影=S半圆-S△ACE=12.5π-
1
2×4×2
21=12.5π-4
21.
如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE
在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE
如图,在圆o中,c是弧AB的中点,连接AC并延长到点D,使CD=CA,连接DB并延长DB交圆o于点E,连接AE,求证:A
如图,在圆心O中C为劣弧AB的中点,连接AC并延长至D使CD=CA,连接BD并延长BD交圆心O于E,连接AE,求证:AE
如图,ab,ac是圆o中相等的两弦,延长ca到点d,使ad=ac,连接db并延长交圆o于点e,连接ce.求证:ce是圆o
如图,AB,AC是圆心o的两条相等的弦,延长CA到点D,使AD=AC,连接DB并延长交圆心O于点E,连接CE.CE是圆心
已知如图,D是圆O劣弧AC的中点连结AD并延长AD使DB=AD,连接BC并延长交圆O于E
1、已知弦AB=AC,延长CA至D,使AC=AD,连接DB并延长交圆O于E,连接CE,求证:CE是圆O的直径
如图已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点切线相交于点D,E为CH中点,连接AE并延长交
AB、AC是圆O内两个相等的弦,延长CA到D,使DA=AC,连接DB并延长交圆O与点E,连接CE.求证CE是圆O的直径
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE= ED,延长DB到点F,使FB= BD,连接AF
如图,在三角形ABC中,D在AB上,且AD:DB=2:1,E是CD的中点,连接AE并延长交BC于F,则EF:AE=