已知{an}是等差数列,bn=kan+m(k,m为常数).求证{bn}是等差数列
已知{an}是等差数列,bn=kan+m(k,m为常数).求证{bn}是等差数列
若数列{an},{bn}都是等差数列,s,t 为已知常数,求证数列{ s an+t bn}是等差数列
已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列
已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.
已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列
已知数列an是等差数列 且bn=2^a{n}求证bn为等比数列 {}里为下标 ^为上标
已知数列{an}得前n项和为sn=an^2+bn(a,b为常数且a不等于0)求证数列{an}是等差数列
已知数列{an}是等差数列,且bn=2的an次方,求证数列{bn}是等比数列
已知数列{an}、{bn}是等差数列.求证:{pan+qbn}是等差数列.
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12,令bn=3^an,求证,数列{bn}是等比数列
已知数列{an},定义bn=(a1+a2+……+an)/2.求证:数列{bn}成等差数列的充要条件是{an}成等差数列.
若数列{an}是公比为q的等比数列,且bn=lgan,求证{bn}为等差数列