如图,已知射线CB平行OA ,∠C=∠OAB=100,E,F,在CB上,且满足∠FOB= ∠AOB
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 02:50:35
如图,已知射线CB平行OA ,∠C=∠OAB=100,E,F,在CB上,且满足∠FOB= ∠AOB
(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= ∠COA= ×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°/4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= ∠COA= ×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°/4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
如图,已知射线CB平行OA ,∠C=∠OAB=100,E,F,在CB上,且满足∠FOB= ∠AOB
如图,已知射线CB平行OA ,∠C=∠OAB=120°,E,F,在CB上,且满足∠FOB= ∠AOB,OE平分∠COF.
如图,已知射线CB‖OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
已知如图,射线CB‖OA,∠C=∠OAB=100,E、F在CB上,且满足∠FOB=∠AOB,OE 平分∠
已知如图,射线CB||OA,∠C=∠OAB=100度,E、F在CB上,且满足∠FOB=∠AOB.OE平分∠COF.
如图,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
如图,已知射线AB‖OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(问题如
已知射线CB‖OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,求∠EOB的度
如图所示,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF
如图,已知,CB∥OA,∠C=∠A=100°,点E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.