如图,在△ABC中,∠A=90°,AB=4,AC=3、M是AB上的动点【不与A、B重合】、过点M作MN∥BC交AC于点N
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:12:24
如图,在△ABC中,∠A=90°,AB=4,AC=3、M是AB上的动点【不与A、B重合】、过点M作MN∥BC交AC于点N、以MN为直径作圆O、并在圆O内作内接矩形AMPN、令AM=x.
(1)当x为何值时、圆O与直线BC相切?
(2)在动点M的运动过程中、记△MNP与梯形BCNM重合的面积为y、试求y与x间函数关系、并求x为何值时、y的值最大、最大是多少?
(1)当x为何值时、圆O与直线BC相切?
(2)在动点M的运动过程中、记△MNP与梯形BCNM重合的面积为y、试求y与x间函数关系、并求x为何值时、y的值最大、最大是多少?
【参考答案】
(1)设直线BC与⊙O相切于点D,连接AO,OD.
AO=OD=MN/2
在Rt△ABC中,BC=√(AB²+AC²)=5
∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴△AMN∽△ABC
∴AM/AB=MN/BC即x/4=MN/5
∴OD=5x/8
过点M作MQ⊥BC于Q,则MQ=OD=5x/8
在Rt△BMQ与Rt△BAC中,∠B是公共角,∴△BMQ∽△BCA.
∴BM/BC=QM/AC即BM/5=(5x/8)/3
解得 BM=25x/24
AB=BM+AM=(25x/24)+x=4
解得 x=96/49
即 当x=96/49时,圆O与直线BC相切
再问: 谢谢老师、
再答: 本题的思路就是这样,主要利用相似三角形得到所求的结论
(1)设直线BC与⊙O相切于点D,连接AO,OD.
AO=OD=MN/2
在Rt△ABC中,BC=√(AB²+AC²)=5
∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
∴△AMN∽△ABC
∴AM/AB=MN/BC即x/4=MN/5
∴OD=5x/8
过点M作MQ⊥BC于Q,则MQ=OD=5x/8
在Rt△BMQ与Rt△BAC中,∠B是公共角,∴△BMQ∽△BCA.
∴BM/BC=QM/AC即BM/5=(5x/8)/3
解得 BM=25x/24
AB=BM+AM=(25x/24)+x=4
解得 x=96/49
即 当x=96/49时,圆O与直线BC相切
再问: 谢谢老师、
再答: 本题的思路就是这样,主要利用相似三角形得到所求的结论
如图,在△ABC中,∠A=90°,AB=4,AC=3、M是AB上的动点【不与A、B重合】、过点M作MN∥BC交AC于点N
如图,在三角形ABC中,角A=90度,AB=4,AC=3,M是边AB上的一个动点(M不与A、B),MN//BC交AC于点
如图,在△ABC中,∠B与∠C的平分线相交于O点,过O点作MN∥BC交AB于M,交AC于N.若AB=12,BC=24,A
已知,在Rt△ABC中,∠A=90°,AB=4,AC=3,M是从A到B的动点,速度为每秒14个单位,过M点作MN‖BC交
已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,
如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=12,AC
如图 在三角形ABC中,∠B与∠C的平分线交与点O,过点O作MN平行于BC,分别交AB、AC于M、N.若AB=5,AC=
如图,在Rt△ABC中,∠ACB=90°,过直角边AC上的一点P作直线交AB于点M,交BC延长线于点N,且∠APM=∠A
如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于Q,QR
如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线
在Rt△ABC中,∠ACB=90,点P在AC边上,过P点作直线MN交AB于点M,交BC延长线于点N,且∠APM=∠A,求
如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.