作业帮 > 综合 > 作业

空间向量与立体几何在底面是菱形的四棱锥P-ABCD中,角ABC=六十度,PA=AC=a,PB=PD=根号2a,点E在PD

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 21:46:26
空间向量与立体几何
在底面是菱形的四棱锥P-ABCD中,角ABC=六十度,PA=AC=a,PB=PD=根号2a,点E在PD上,且PE:ED=2:1.求以AC为棱,EAC与DAC为面的二面角的大小.
空间向量与立体几何在底面是菱形的四棱锥P-ABCD中,角ABC=六十度,PA=AC=a,PB=PD=根号2a,点E在PD
提示:先证明PA⊥平面ABCD(用勾股定理证明PA⊥AB,PA⊥AD);
以AB、AD、AP为轴建立空间直角坐标系,分别求出平面EAC及平面DAC的法向量,
然后求出两个法向量夹角余弦的绝对值即可.