已知函数f(x)=ax^2+bx+c(a>0,b∈R,c属于R)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 13:04:10
已知函数f(x)=ax^2+bx+c(a>0,b∈R,c属于R)
(I)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)={f(x)x>0,-f(x)x<0,求F(2)+F(-2)的值
(II)若a=1,c=0,且If(x)I≤1在区间(0,1】恒成立,试求b取值范围
(I)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)={f(x)x>0,-f(x)x<0,求F(2)+F(-2)的值
(II)若a=1,c=0,且If(x)I≤1在区间(0,1】恒成立,试求b取值范围
(1)因为c=1,所以f(x)=ax^2+bx+1
因为f(x)的最小值是f(-1)=0,a>0,所以顶点是(-1,0),代入可解得:
a=1
b=2
f(x)=x^2+2x+1
f(2) = 9
f(-2) = 1
F(2)= f(2) = 9
F(-2)= -f(-2) =-1
F(2)+F(-2)= 8
(2)a=1,c=0,
f(x)=x^2+bx
If(x)I≤1
-1≤ f(x)≤1
f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件:
对称轴在(0,1).0< -b/2
因为f(x)的最小值是f(-1)=0,a>0,所以顶点是(-1,0),代入可解得:
a=1
b=2
f(x)=x^2+2x+1
f(2) = 9
f(-2) = 1
F(2)= f(2) = 9
F(-2)= -f(-2) =-1
F(2)+F(-2)= 8
(2)a=1,c=0,
f(x)=x^2+bx
If(x)I≤1
-1≤ f(x)≤1
f(x)=x^2+bx的图像开口向上,那么,要使在区间(0,1】内-1≤ f(x)≤1恒成立,必须同时满足下面4个条件:
对称轴在(0,1).0< -b/2
已知函数f(x)=ax^2+bx+c(a>0,b∈R,c属于R)
已知函数f(x)=x^3-ax^2+bx+c(a,b,c∈R)
1.已知函数f(x)=ax^2+bx+c(a大于0,b∈R,c∈R)
设二次函数f(x)=ax^2+bx+c(a,b,c属于R,a不等于0)
二次函数f(x)=ax^2+bx+c(x属于R,a不等于0)
已知二次函数f(x)=ax^2+bx+c(a.b.c属于R) f(-2)=f(0)=0 f(x)的最小值为-1
已知a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0
已知函数f(x)=ax^2+bx+c中,a+b+c=0,a>b>c.若存在x属于R,使ax^2+bx+c=0成立.试判断
已知函数f(x)=ax²+bx+c(a>0,b属于R,c属于R).①若函数f(x)的最小值是f(-1)=0,且
已知二次函数f(x)=ax²+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)最小值为-1
已知二次函数f(x)=ax^2+bx+c(a b c∈R且≠0)f(-1)=0
已知一次函数f(x)=ax+b与二次函数g(x)=aX2+bx+c满足a>b>c,且a+b+c=0(a,b,c属于R)