如图,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x轴交于点B,点C和点B关于y轴对称.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 21:41:06
如图,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x轴交于点B,点C和点B关于y轴对称.
(1)求△ABC内切圆的半径;
(2)过O、A两点作⊙M,分别交直线AB、AC于点D、E,求证:AD+AE是定值,并求其值.
(1)求△ABC内切圆的半径;
(2)过O、A两点作⊙M,分别交直线AB、AC于点D、E,求证:AD+AE是定值,并求其值.
(1)∵直线AB的解解析式为:y=x+1,
∴A(0,1),B(-1,0),
∵点C和点B关于y轴对称.
∴点C(1,0),
∴OA=OB=OC=1,
∵△ABC为Rt△,AB=AC=
2,BC=2,
∴r=
AB+AC−BC
2,即内切圆的半径为
2-1.
(2)连接OD,OE,DE.AE,
∵∠BAC=90°,
∴DE为直径.∴∠DOE=90°.
又∵∠AOB=90°,∴∠DOB=∠AOE.
又∵∠OAE=∠OBD=45°,且OA=OB.
∴△AOE≌△BOD.故AE=BD.
∴AD+AE=AD+BD=AB=
2.
∴A(0,1),B(-1,0),
∵点C和点B关于y轴对称.
∴点C(1,0),
∴OA=OB=OC=1,
∵△ABC为Rt△,AB=AC=
2,BC=2,
∴r=
AB+AC−BC
2,即内切圆的半径为
2-1.
(2)连接OD,OE,DE.AE,
∵∠BAC=90°,
∴DE为直径.∴∠DOE=90°.
又∵∠AOB=90°,∴∠DOB=∠AOE.
又∵∠OAE=∠OBD=45°,且OA=OB.
∴△AOE≌△BOD.故AE=BD.
∴AD+AE=AD+BD=AB=
2.
如图,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x轴交于点B,点C和点B关于y轴对称.
如图1,在平面直角坐标系中,直线y=-2x+2交y轴于A点,交x轴于B点,点C与点A关于x轴对称.
如图,在平面直角坐标系中,直线y=x+1与y=-3/4x+3交于点A,分别交x轴于点B和点C,点D在直线AC上.
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. 在线等,快,
在平面直角坐标系中直线Y=-2x+2交Y轴于点A交X轴于点B点C和点A关于x轴对称 (1)求直线bc的解析式
如图,在平面直角坐标系xOy中,直线y=x+1与y=- 4分之之3x+3交于点A,分别交x轴于点B和点C,点D是
如图,在平面直角坐标系中,直线y=负2+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=m/x在第一象限的图像交于点C(1,6
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
如图,在平面直角坐标系中,直线l1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y:=kx-4交于点C,且S△AO
如图,在平面直角坐标系中,直线L1:y=x-2交x轴于点A,交y轴于点B,与直线l2:y=kx-4交于点c,且s△AOC
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A,点B,与反比例函数y=m/x在第一象限的图像交与点C(1,6