设f在[a,b]上可导,|f'(x)|
设f在[a,b]上可导,|f'(x)|
设f(x)在[a,b]二阶可导,且f''(x)
【中值定理证明题】设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)f(b)>0,f(a)f((a+b)/
设函数f(x)在【a,b】上可导,且f(a)=A,f(b)=B,
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]0,f(a)f[(a
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]
设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)|
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:
设函数f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a
设f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,在(a,b)上可导(0