如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 14:00:26
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.
(1)∵tan∠ABC=1,
∴OC:OB=1,
∴OB=OC=3,
∴B(3,0),
把B(3,0)代入y=x2+bx-3,得9+3b-3=0,b=-2,
∴y=x2-2x-3;
(2)P(
3
7,0),
顶点横坐标=2÷(2×1)=1,
纵坐标=[4×1×(-3)-(-2)×(-2)]÷4×1=-4,
D(1,-4)
∵△CED∽△C′OP,
∴
C′O
C′E=
AP
ED,
∴
3
7=
OP
1,
∴P(
3
7,0).
(3)当E在第四象限,S=-
3
2x2+
9
2x+6(0<x<3),
当E在第三象限,S=-
1
2x2-
1
2x+6(-1<x<0),
当E在第一象限或第二象限,S=2x2-4x(x<-1或x>3).
∴OC:OB=1,
∴OB=OC=3,
∴B(3,0),
把B(3,0)代入y=x2+bx-3,得9+3b-3=0,b=-2,
∴y=x2-2x-3;
(2)P(
3
7,0),
顶点横坐标=2÷(2×1)=1,
纵坐标=[4×1×(-3)-(-2)×(-2)]÷4×1=-4,
D(1,-4)
∵△CED∽△C′OP,
∴
C′O
C′E=
AP
ED,
∴
3
7=
OP
1,
∴P(
3
7,0).
(3)当E在第四象限,S=-
3
2x2+
9
2x+6(0<x<3),
当E在第三象限,S=-
1
2x2-
1
2x+6(-1<x<0),
当E在第一象限或第二象限,S=2x2-4x(x<-1或x>3).
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连结BC,已知OB=OC
如图,顶点为D的抛物线y=x²+bx-3与x轴相交于A,B两点,与y轴相交于点C,连结BC,已知OB=OC.
如图,顶点为D的抛物线y=x平方+bx-3与x轴交于A 、B两点,与y轴交于点C,连结BC.已知tan∠ABC=1
已知:如图,抛物线y= x2+bx+c与x轴、y轴分别相交于点A(?1,0)、B(0,3)两点,其顶点为D. (1)求
已知抛物线y=x2+bx+c与y轴相交于点A 与x轴正半轴交于B,C两点且BC等于2三角形ABC的
如图,抛物线y=-x平方+2x+3与x轴相交于A,B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与
如图,抛物线y=-x^2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与
如图,抛物线y=-x²+bx+c与x轴相交于A,B两点,与y轴相交于点C,点D为抛物线的顶点,点E在抛物线上,
如图,已知抛物线y=- x2+x+3的图象与x轴交于点A、点B,与y轴交于点C,顶点为D,对称轴l与直线BC相交于点E
如图,抛物线y=-x2+2x+3与x轴相交于点A、B两点(点A在点B左侧),与y轴相交于点C,顶点为D.
如图,抛物线y=-x2+2x+3与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D