什么叫泰勒公式?泰勒公式的应用
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:28:00
什么叫泰勒公式?
泰勒公式的应用
泰勒公式的应用
在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值.泰勒公式还给出了这个多项式和实际的函数值之间的偏差.
泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)
麦克劳林展开式
:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!x^2,+f'''(0)/3!x^3+……+f(n)(0)/n!x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!x^(n+1),这里0
泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)
麦克劳林展开式
:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!x^2,+f'''(0)/3!x^3+……+f(n)(0)/n!x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!x^(n+1),这里0