已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 22:55:18
已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.
答:第一种:连接CD、BE,得:CD=BE
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠CAB=∠EAD
∴∠CAD=∠EAB
∴△ABE≌△ADC
∴CD=BE
第二种:连接DB、CE得:DB∥CE
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE
∴∠ADB=∠ABD,
∴∠BDF=∠FBD
同理:∠FCE=∠FEC
∴∠FCE=∠DBF
∴DB∥CE
第三种:连接DB、AF,得AF⊥BD
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF
∴AF⊥BD(10分)
第四种:连接CE、AF,得AF⊥CE
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF,
∴∠CAF=∠EAF
∴AF⊥BD
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠CAB=∠EAD
∴∠CAD=∠EAB
∴△ABE≌△ADC
∴CD=BE
第二种:连接DB、CE得:DB∥CE
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE
∴∠ADB=∠ABD,
∴∠BDF=∠FBD
同理:∠FCE=∠FEC
∴∠FCE=∠DBF
∴DB∥CE
第三种:连接DB、AF,得AF⊥BD
∵△ABC≌△ADE,
∴AD=AB,∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF
∴AF⊥BD(10分)
第四种:连接CE、AF,得AF⊥CE
∵△ABC≌△ADE,
∴AD=AB,AC=AE
∠ABC=∠ADE=90°
又AF=AF,
∴△ADF≌△ABF
∴∠DAF=∠BAF,
∴∠CAF=∠EAF
∴AF⊥BD
已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连
如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.请你找出图中的一
如图所示,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD、EB
如图,已知Rt△SBC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F连接CD,EB.求证CF=EF
如图,已知Rt△ABC≡Rt△ADE,∠ABC=90°,∠ADE=90°,BC与DE相交于点F,连接CD、EB ,求证C
1.已知等腰RT△ABC ∠C=90° 以A为直角顶点任作等腰RT△ADE 连DB 设P为线段DB中点 M为AE中点 N
如图,已知在Rt△ABC中,∠C=90°,AE平分∠BAC,交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的
如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经
如图,RT△ABC与RT△ADE共顶点A,∠CAB=∠EAD=60°,连CE,P为CE中点,连DP,BP.请探究:若AE
如图,已知Rt三角形ABC全等于Rt三角形ADE,角ABC=角ADE=90度,BC与DE相交与点F,连接CD,EB.
已知:在Rt△ABC中,AB=BC,∠ABC=90°在Rt△ADE中,E为线段AB上一点,D为线段AC上一点,AD=DE
如图,已知△ABC是等边三角形,d为bc上一点,以ad为边做∠ade=60°,de与△abc的外角平分线ce交于点e,连