作业帮 > 数学 > 作业

求不定积分(1)∫arctanx/x^2dx (2)∫dx/x^2*(x+1)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 14:18:46
求不定积分(1)∫arctanx/x^2dx (2)∫dx/x^2*(x+1)
求不定积分(1)∫arctanx/x^2dx (2)∫dx/x^2*(x+1)
楼上的结果是错的,因为(sint)^2和sin(t^2)完全不同
第一个题先用第一换元法把分母上的x^2放到微分里面去再用分部积分法,即可把原积分化成有理函数的积分,结果是
-(arctanx)/x + ln(x绝对值) - 1/2 * ln(1+x^2)
第二题把 1/x^2*(x+1)写成1/(x+1) + (1-x)/x^2即可,结果是
ln|x+1| - ln|x| - 1/x