如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 02:19:24
如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F
(1)若CB=6,PB=2,则EF=,DF=
(2)请探究BF,DG和CD这三条线段之间的数量关系,写出你的结论并证明
(1)若CB=6,PB=2,则EF=,DF=
(2)请探究BF,DG和CD这三条线段之间的数量关系,写出你的结论并证明
(1)连AC、EC、PF,
因为PE⊥PC PE=CP
∴∠CEP=∠CAP=45°
∴A、E、C、P四点共圆
∴∠EAC=∠EPC=90°
∴∠EAD=∠DAC=45°=∠ABD
∴AE∥BF而EF∥CD∥AB
∴AB∥EF
∴四边形AEFP是平行四边形
∴EF=AB=CB=6
∴∠APE=∠PEF
因为∠EPC=∠PBC=90°
∴∠APE=∠PCB
∴∠PEF=∠PCB
PE=PC
△PEF≅△PCB(SAS)
∴PF=PB=2
∴BF=2√(2)
因为BD=√(2)AB=6√(2)
∴DF=6√(2)-2√(2)=4√(2)
(2)分二种情形:
当P在线段BA上时
因为EF=∥CD可证四边形CDEF是平行四边形
∴DG=GF
∴DG+GF=2DG
∴BF+2DG=BD=√(2)CD
当P在BA延长线上时
BF-2DG=BD=√(2)CD
因为PE⊥PC PE=CP
∴∠CEP=∠CAP=45°
∴A、E、C、P四点共圆
∴∠EAC=∠EPC=90°
∴∠EAD=∠DAC=45°=∠ABD
∴AE∥BF而EF∥CD∥AB
∴AB∥EF
∴四边形AEFP是平行四边形
∴EF=AB=CB=6
∴∠APE=∠PEF
因为∠EPC=∠PBC=90°
∴∠APE=∠PCB
∴∠PEF=∠PCB
PE=PC
△PEF≅△PCB(SAS)
∴PF=PB=2
∴BF=2√(2)
因为BD=√(2)AB=6√(2)
∴DF=6√(2)-2√(2)=4√(2)
(2)分二种情形:
当P在线段BA上时
因为EF=∥CD可证四边形CDEF是平行四边形
∴DG=GF
∴DG+GF=2DG
∴BF+2DG=BD=√(2)CD
当P在BA延长线上时
BF-2DG=BD=√(2)CD
如图,已知正方形ABCD,点P为射线BA上的一点,过P作PE垂直CP,且CP=PE,过E作EF‖CD交射线BD于F
如图,已知正方形ABCD,点P为射线BA上的一点(不和点A,B重合),过P作PE⊥CP ,且CP=PE.过E作EF∥CD
如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF
如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP
已知矩形ABCD,CD=2,AD=3,P是AD上的一个动点,且和A、D不重合,过P作PE垂直于CP交直线AB于点E,
已知,如图,过正方形ABCD的对角线BD上一点P,作PE⊥BC于E,PE⊥CD于F,请你说明1.AP=EF 2.AP⊥E
如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF 如图,过正方形ABCD
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于
正方形ABCD中,P是对角线AC上一点,过点P作PF⊥CD于点F.连接PB,过点P作PE⊥PB且PE交线段CD于点E.
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC
如图:过▱ABCD的顶点C作射线CP分别交BD、AD于E、F,交BA的延长线于G
四边形ABCD对角线AC,BD交于P,过点P作直线交AD于E,交BC于F,如PE=PF.且,AP+AE=CP+CF.证明