作业帮 > 数学 > 作业

若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:22:57
若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是
多少?
若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是
由方程得:O(0,0),F(-1,0)
设P点坐标(X,Y)(-2≤X≤2,-√3≤Y≤√3)
则3X²+4Y²=12
向量OP=(X,Y),FP=(X+1,Y)
∴OP乘FP=X²+X+Y²
∵3X²+4Y²=12
∴Y²=(12-3X²)/4
∴OP乘FP=X²/4+X+3=1/4*(x+2)²+2,
∴当X=2时,OP乘FP有最大值6
若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是 1.若点O和点F分别为椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量op乘向量FP的最大值 若点O和点F分别为椭圆(x^2/4)+(y^2/3)=1的中心和左焦点,点P为椭圆上的任意一点则向量OP*向量FP的最大 若点O和点F分别为椭圆X2/4+Y2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OP乘向量FP的最大值为? 一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是 若点O和点F分别为椭圆x²\4 +y²\3=1的中心和左焦点,点P 为椭圆上任意一点,则向量OP*向 点O和F分别为双曲线X^2/3-y^2=1的中心和左焦点,P为双曲线右支上任意一点,则向量OP.向量FP的取值范围是 若点O与点F分别为椭圆x²/4+y²/3=1的中心与左焦点,点P为椭圆上任意的一点,则OP̶ 设P为椭圆x^2/4+y^2=1上的任意一点,O为坐标原点,F为椭圆的左焦点,点M满足向量OM=1/29(向量OP+向量 若点O和点F分别为椭圆x²/4+y²/3=1的中心和左焦点,点P为椭圆上的任何一点 若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量 已知椭圆X^2/25+Y^2/16=1,右焦点F,Q,P分别是椭圆上一点和椭圆外一点,且Q为FP中点,则P点的轨迹方程为