求证:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:47:37
求证:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
证明:法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.
若a+b<0,则a<-b,b<-a,
又∵f(x)是(-∞,+∞)上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b).
即原命题的逆否命题为真命题,
∴原命题为真命题.
法二:假设a+b<0,则a<-b,b<-a,
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),
这与已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,
因此假设不成立,故a+b≥0.
若a+b<0,则a<-b,b<-a,
又∵f(x)是(-∞,+∞)上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b).
即原命题的逆否命题为真命题,
∴原命题为真命题.
法二:假设a+b<0,则a<-b,b<-a,
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),
这与已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,
因此假设不成立,故a+b≥0.
求证:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0
已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
已知f(x)在R上是增函数,a、b∈R.(1)若a+b≥0,求证f(a)+f(b)≥f(-a)+f(-b).(2)求证f
已知函数f(x)在R上是增函数,a ,b∈ R 命题:若a+b≥0 则f( a )+f ( b )
设原命题是:“已知函数f(x)是R上的增函数,若a+b>0则f(a)+f(b)>f(-a)+f(-b)"写出它的逆命题、
问一道高二反证法题设函数f(x)是R上的增函数,a,b都属于R,对于命题:“若a+b≥0,则f(a)+f(b)≥f(-a
已知函数fx是r上的增函数,对于实数ab若a+b>0,则 ( ) a.f(a)+f(b)>f(-a)+f(-b) b.f
已知函数F(X)是R上的减函数,且a+b大于0,求证f(a)+f(b) 小于f(-a)+f(-b)
已知定义域为R,函数f(x)满足f(a+b)=f(a)•f(b)(a,b∈R),且f(x)>0,若f(1)=12,则f(
已知函数y=f(x)(x∈R),若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证f(x)是奇函数
函数f(x)对于任意的a.b属于R都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1,求证f(x)是
f(x)是定义R上的奇函数,且它是减函数,若实数a,b满足f(a)+f(b)>0则a+b_____0(填“>”,“