设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:19:29
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^½
本题要证明:1/(b-a)∫[a--->b] f(x)dx≤(1/(b-a)∫[a--->b]f²(x)dx)^½
两边平方,即应证:1/(b-a)²(∫[a--->b] f(x)dx)²≤1/(b-a)∫[a--->b]f²(x)dx
即:(∫[a--->b] f(x)dx)²≤(b-a)∫[a--->b]f²(x)dx
由于:b-a=∫[a--->b] 1dx,因此该不等式其实是柯西-许瓦兹不等式的特例.
下面是该不等式的一个经典证法:
构造函数g(t)=t²∫[a--->b]f²(x)dx+2t∫[a--->b] f(x)dx+(b-a)
由于定积分的结果为常数,因此该函数是一个二次函数
又g(t)=t²∫[a--->b]f²(x)dx+2t∫[a--->b] f(x)dx+∫[a--->b] 1dx
=∫[a--->b] (t²f²(x)+2tf(x)+1) dx 注意到被积函数是一个完全平方
=∫[a--->b] (tf(x)+1)² dx
≥0
由于二次函数恒大于等于0,因此其判别式Δ≤0
得:[2∫[a--->b] f(x)dx]²-4(b-a)∫[a--->b]f²(x)dx≤0
整理后即为:(∫[a--->b] f(x)dx)²≤(b-a)∫[a--->b]f²(x)dx
因此原不等式得证.
两边平方,即应证:1/(b-a)²(∫[a--->b] f(x)dx)²≤1/(b-a)∫[a--->b]f²(x)dx
即:(∫[a--->b] f(x)dx)²≤(b-a)∫[a--->b]f²(x)dx
由于:b-a=∫[a--->b] 1dx,因此该不等式其实是柯西-许瓦兹不等式的特例.
下面是该不等式的一个经典证法:
构造函数g(t)=t²∫[a--->b]f²(x)dx+2t∫[a--->b] f(x)dx+(b-a)
由于定积分的结果为常数,因此该函数是一个二次函数
又g(t)=t²∫[a--->b]f²(x)dx+2t∫[a--->b] f(x)dx+∫[a--->b] 1dx
=∫[a--->b] (t²f²(x)+2tf(x)+1) dx 注意到被积函数是一个完全平方
=∫[a--->b] (tf(x)+1)² dx
≥0
由于二次函数恒大于等于0,因此其判别式Δ≤0
得:[2∫[a--->b] f(x)dx]²-4(b-a)∫[a--->b]f²(x)dx≤0
整理后即为:(∫[a--->b] f(x)dx)²≤(b-a)∫[a--->b]f²(x)dx
因此原不等式得证.
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
设f(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明∫(上b下a)f(x)f'(x)dx=1/2(a
设函数f(x)在[a,b]上连续,证明:∫(a→b)f(x)dx=(b-a)∫(0→1)f[a+(b-a)x]dx
设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
设f(x)在区间[a,b]上连续,则∫f(x)dx-∫f(t)dt(区间都是[a,b])的值为?