作业帮 > 数学 > 作业

2007年北京市初三数学一模试卷

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:33:25
2007年北京市初三数学一模试卷
北京市每个区的都要 越多越好 如没有全卷 有最后两题也行
卷子全面的我加分阿
2007年北京市初三数学一模试卷
北京市2006年高级中等学校招生统一考试(课标A卷)
  数学试卷
  一.选择题(本题共32分,每小题4分)
  在下列各题的四个备选答案中,只有一个是正确的.
  01.-5的相反数是
  A、5 B、-5 C、 D、
  02.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为
  A、0.25×107 B、2.5×107 C、2.5×106 D、25×105
  03.在函数中,自变量x的取值范围是
  A、x≠3 B、x≠0 C、x>3 D、x≠-3
  04.如图,AD‖BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为
  A、155° B、50° C、45° D、25°
  05.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷、奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是
  A、32,31 B、32,32 C、3,31 D、3,32
  06、把代数式xy2-9x分解因式,结果正确的是
  A、 B、 C、 D、
  07.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为
  A、 B、 C、 D、
  08.将如右图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是
  二.填空题(本题共16分,每小题4分)
  09.若关于x得一元二次方程x2-3x+m=0有实数根,则m的取值范围是 .
  10.若,则m+n的值为 .
  11.用“☆”定义新运算: 对于任意实数a、b, 都有a☆b=b2+1. 例如7☆4=42+1=17,那么5☆3= ;当m为实数时,m☆(m☆2)= .
  12.如图,在△ABC中,AB=AC,M、N分别是AB、AC的中点,D、E为BC上的点,连结DN、EM.若AB=13cm,BC=10cm,DE=5cm,则图中阴影部分的面积为 cm2.
  三.解答题(本题共30分,每小题5分)
  13.计算:.
  14.解不等式组:.
  15.解分式方程:.
  16.已知:如图,AB‖ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.
  17.已知2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值.
  18.已知:如图,在梯形ABCD中,AD‖BC,∠ABC=90°,∠C=45°,BE⊥CD于点E,AD=1,CD=.求:BE的长.
  四.解答题(本题共20分,第19题6分,第20题5分,第21题5分,第22题4分)
  19.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.
  (1)求证:AD是⊙O的切线;
  (2)若OD⊥AB,BC=5,求AD的长.
  20.根据北京市统计局公布的2000年、2005年北京市常住人口相关数据,绘制统计图表如下:
  2000年、2005年北京市常住人口中受教育程度情况统计表(人数单位:万人)
  年份 大学程度人数
  (指大专及以上) 高中程度人数
  (含中专) 初中程度人数 小学程度人数 其它人数
  2000年 233 320 475 234 120
  2005年 362 372 476 212 114
  请利用上述统计图表提供的信息回答下列问题:
  (1)从2000年到2005年北京市常住人口增加了多少万人?
  (2)2005年北京市常住人口中,少儿(0~14岁)人口约为多少万人?
  (3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法.
  21.在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线l,直线l与反比例函数
  的图象的一个交点为A(a,3),试确定反比例函数的解析式.
  22.请阅读下列材料:
  问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
  小东同学的做法是:设新正方形的边长为x(x>0).依题意,割补前后图形的面积相等,有x2=5,解得x=.由此可知新正方形得边长等于两个小正方形组成得矩形对角线得长.于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
  请你参考小东同学的做法,解决如下问题:
  现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形.要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
  说明:直接画出图形,不要求写分析过程.
  五.解答题(本题共22分,第23题6分,第24题8分,第25题8分)
  23.如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:
  (1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;
  (2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
  24.已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
  (1)求此抛物线的解析式;
  (2)若点D为线段OA的一个三等分点,求直线DC的解析式;
  (3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
  25.我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
  (1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
  (2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.