作业帮 > 数学 > 作业

问a取什么值时,线性方程组ax1+x2+x3=1,x1+ax2+x3=a,x1+x2+ax3=a^2,有唯一解;无解;有

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:44:49
问a取什么值时,线性方程组ax1+x2+x3=1,x1+ax2+x3=a,x1+x2+ax3=a^2,有唯一解;无解;有无穷多个解?
问a取什么值时,线性方程组ax1+x2+x3=1,x1+ax2+x3=a,x1+x2+ax3=a^2,有唯一解;无解;有
参考这个:
λ取何值时非齐次线性方程组有唯一解,无解,有无穷解
λX1+X2+X3=1
X1+λX2+X3=λ
X1+X2+λX3=λ^2
增广矩阵为
λ 1 1 1
1 λ 1 λ
1 1 λ λ^2
先计算系数矩阵的行列式
λ 1 1
1 λ 1
1 1 λ
= (λ+2)(λ-1)^2.
当λ≠1 且λ≠-2 时,由Crammer法则知有唯一解.
当λ=1时,增广矩阵为
1 1 1 1
1 1 1 1
1 1 1 1
->
1 1 1 1
0 0 0 0
0 0 0 0
通解为:(1,0,0)'+c1(-1,1,0)'+c2(-1,0,1)'
当λ=-2时,增广矩阵为
-2 1 1 1
1 -2 1 -2
1 1 -2 4
r3+r1+r2
-2 1 1 1
1 -2 1 -2
0 0 0 3
此时方程组无解.