作业帮 > 数学 > 作业

12个球,一个质量异常外,其余都一样(所有球外貌一样).现只有一无砝码的天平,要求只称3次,找出异球.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 20:12:10
12个球,一个质量异常外,其余都一样(所有球外貌一样).现只有一无砝码的天平,要求只称3次,找出异球.
12个球,一个质量异常外,其余都一样(所有球外貌一样).现只有一无砝码的天平,要求只称3次,找出异球.
这个问题,看似简单,其实相当复杂,下面是抄来的答案:
把12个球编成1,2.12号,则可设计下面的称法:
左盘 *** 右盘
第一次 1,5,6,12 *** 2,3,7,11
第二次 2,4,6,10 *** 1,3,8,12
第三次 3,4,5,11 *** 1,2,9,10
每次都可能有平、左重、右重三种结果,搭配起来共有27种结果,但平、平、平的结果不会出现,因为总有一个球是不相等的.同样左、左、左,右、右、右的结果也不回出现,因为根据设计的称法,没有一个球是三次都在左边或右边的.剩下的24种结果就可以判断出哪种情况是哪一个球了.例如:如果结果是平、平、左或是平、平、右,就可判断出是9号球,因为第一次与第二次都没有9号球,唯独第三次有9号球,而第一次与第二次都是平的,只有第三次是失衡的,说明9号球的重量与其它的球不同.可依据此原理判断出其它的各种情况分别是哪个球.
有12个球,而坏球又可能比好球轻也可能比好球重,所以总共有12x2=24种可能,24可能结果如下表:
1号球,且重 -左、右、右 1号球,且轻 -右、左、左
2号球,且重 -右、左、右 2号球,且轻 -左、右、左
3号球,且重 -右、右、左 3号球,且轻 -左、左、右
4号球,且重 -平、左、左 4号球,且轻 -平、右、右
5号球,且重 -左、平、左 5号球,且轻 -右、平、右
6号球,且重 -左、左、平 6号球,且轻 -右、右、平
7号球,且重 -右、平、平 7号球,且轻 -左、平、平
8号球,且重 -平、右、平 8号球,且轻 -平、左、平
9号球,且重 -平、平、右 9号球,且轻 -平、平、左
10号球,且重-平、左、右 10号球,且轻-平、右、左
11号球,且重-右、平、左 11号球,且轻-左、右、平
12号球,且重-左、右、平 12号球,且轻-左、右、平
上面的24种结果里面没有一个重复的,也可以把上面的结果反过来当成可能,也可唯一的推出那个球为坏球,证明此方法可行.
也可这么解释
一开始把天平两边一边放4个,还有4个留着.
情况1:如果两边平了,那么坏的肯定是在留着的4个里面.把4个球编号为1,2,3,4.
先把1和2拿出来称,如果平了,那么就意味着坏的在3和4里面.那么由于1和2是完好的,于是就把1和3称一下,如果1和3是平的,那么就是4是坏的.如果1和3不平,那么肯定就是3了.(因为1是完好的,1和2同重量).如果1和2不平,那么3和4肯定就是完好的,把1和3再称一下,如果1和3平了,那么就是2,如果1和3不平,那就是1.
情况2:如果两边不平,那么就把两边分组.重的那边分为1,2,3,4,轻的分为A,B,C,D.接着交换了来称,把1,2,A和3,4,B称一下.
如果1,2,A和3,4,B平了,那么也就是说,1,2,3,4和
A,B就是等重的,也就意味着1,2,3,4里没有坏球,也就是说,坏球是偏轻的.(因为坏球出现在轻球组!)那么也就是说,C,D里面轻的那个就是坏的,然后称C,D可以得出坏球,轻的就是.
如果1,2,A和3,4,B不平,那么就看哪一边重.假设是1,2,A重.(这个可以和3,4,B互换的.),那么就把1和2称一下.
如果1和2是平的,那么就意味着B是坏的,因为1和2是等重的,也就是说,1,2里面没有坏球(也是重球),而A是从轻球组来的,A不可能比其他的球重.那么为什么会是1,2,A重呢,原因就很明显了,3,4,B里面有坏球,而且坏球是轻的!但是3和4来自重球组,也就是说,3和4里面不可能有轻球,(否则最开始1,2,3,4那边就会轻!)所以就是B是坏球,也是轻球.
如果1和2不平,那么1,2里面肯定就有一个是坏球,而且由于1,2来自重球组,所以重的那个就是坏的.
同理,要是3,4,B是重的一边,那么推理过程就和上面的一样.
12个球,一个质量异常外,其余都一样(所有球外貌一样).现只有一无砝码的天平,要求只称3次,找出异球. 有12个外观一样,其只有一球质量有一点差异,给你一无砝码的天平,只需称3称把有差异之球找出来 帮忙想个题:现在12个小球;大小、形状都一样、只有一个球的质量是不一样的;要求用一个没有砝码的天平称三 一个没有砝码的天平12个外行一样的铁球其中有一个重量异常只能称三次如何找出那个异常球呢 有12个球,其中11个质量一样.有一个天平,没有砝码,只能称三次,请找出质量不同的那个球? 有十二个乒乓球特征相同,其中只有一个重量异常,要求用一部没有砝码的天平称三次,将重量异常的球找出来 一到挺难的智力题!前两天看到的.有12个乒乓球,外形一样.其中一个质量异常,给你一个没有法码的天平,称3次把那个异常球找 有12个球,形状大小一样,有一个重量不一样,只能用天平称3次,找出那个球,应该怎么称? 有4个外形一样的球,其中一个略轻些,现在只有天平没砝码,至少称几次一定能找出这个较轻的球? 12个大小形状一样的乒乓球,只有1个与其他11个质量不一样,现在用没有砝码的天平3次找出质量不一样的. 有十二个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝码的天平称三次,将那个球找出来. 有十二个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝码的天平称三次,将那个球找出来