作业帮 > 数学 > 作业

如果方程x^2+ax+b=0的两个实根一个小于1,另一个大于1,求实数a^2+b^2范围

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:05:37
如果方程x^2+ax+b=0的两个实根一个小于1,另一个大于1,求实数a^2+b^2范围
如果方程x^2+ax+b=0的两个实根一个小于1,另一个大于1,求实数a^2+b^2范围
解由方程x^2+ax+b=0
构造函数f(x)=x^2+ax+b
又由方程x^2+ax+b=0的两个实根一个小于1,另一个大于1
则f(1)<0
即1+a+b<0
即a+b<-1
即(a+b)^2>1
又由2(a^2+b^2)≥(a+b)^2>1
即a^2+b^2>1/2
故实数a^2+b^2范围(1/2,正无穷大).