智力IQ求解有十二个外表大小一模一样的球!但其中一个球的重量和其他十一个不一样,但不知道它比其他的球轻还是重!有一个天枰
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 15:40:11
智力IQ求解
有十二个外表大小一模一样的球!但其中一个球的重量和其他十一个不一样,但不知道它比其他的球轻还是重!有一个天枰只能量三次!找出那个重量不一样的球,并要知道它比其他球重还是轻!
有十二个外表大小一模一样的球!但其中一个球的重量和其他十一个不一样,但不知道它比其他的球轻还是重!有一个天枰只能量三次!找出那个重量不一样的球,并要知道它比其他球重还是轻!
为了解题的方便,把这三组乒乓球平均分成三组,分别编号为 A组、B组、C组.
首先,选任意的两组球放在天平上称.例如,我们把A、B两组放在天平上称.这就会出现两种情况:
第一种情况,天平两边平衡.那么,不合格的坏球必在c组之中.
其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次.这时,又可能出现
两种情况:
1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只
有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球.
称第三次的时候,可以从C3、C4中任意取出一个球(例如C3),同另一个合格的好球(例如C1)分别放在天平
的两边,就可以推出结果.这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平
衡,那么,坏球必是C3.
2·天平两边不平衡.这样,坏球必在C1、C2中.这是因为,只有C1、C2中有一个是坏球时,天平两边才
不能平衡.这是称第二次.
称第三次的时候,可以从C1、C2中任意取出一个球(例如C1),同另外一个合格的好球(例如C3),分别放
在天平的两边,就可以推出结果.道理同上.
以上是第一次称之后出现第一种情况的分析.
第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组
或B组之中.
我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的
A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,
将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有
三个球:原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3.
这时,可以称第二次了.这次称后可能出现的是三种情况:
1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4
之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球.
这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,
可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1
为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,
所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球.
2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必
在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球.
以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在
天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那
么A4就是坏球 (这时A4重于C1).
3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在
刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4
或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是
A2、A3、B2都是好球.
以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把
A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于
A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球.
首先,选任意的两组球放在天平上称.例如,我们把A、B两组放在天平上称.这就会出现两种情况:
第一种情况,天平两边平衡.那么,不合格的坏球必在c组之中.
其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次.这时,又可能出现
两种情况:
1·天平两边平衡.这样,坏球必在C3、C4中.这是因为,在12个乒乓球中,只有一个是不合格的坏球.只
有C1、C2中有一个是坏球时,天平两边才不平衡.既然天平两边平衡了,可见,C1、C2都是合格的好球.
称第三次的时候,可以从C3、C4中任意取出一个球(例如C3),同另一个合格的好球(例如C1)分别放在天平
的两边,就可以推出结果.这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平
衡,那么,坏球必是C3.
2·天平两边不平衡.这样,坏球必在C1、C2中.这是因为,只有C1、C2中有一个是坏球时,天平两边才
不能平衡.这是称第二次.
称第三次的时候,可以从C1、C2中任意取出一个球(例如C1),同另外一个合格的好球(例如C3),分别放
在天平的两边,就可以推出结果.道理同上.
以上是第一次称之后出现第一种情况的分析.
第二种情况,第一次称过后天平两边不平衡.这说明,c组肯定都是合格的好球,而不合格的坏球必在A组
或B组之中.
我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻.这时候,需要将重盘中的
A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中.同时,再将轻盘中的B1、 B4取出放在一旁,
将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中.经过这样的交换之后,每盘中各有
三个球:原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3.
这时,可以称第二次了.这次称后可能出现的是三种情况:
1·天平两边平衡.这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4
之中.已知A盘重于B盘.所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球.
这时候,可以把B1、B4各放在天平的一端,称第三次.这时也可能出现三种情况:(一)如果天平两边平衡,
可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1
为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,
所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球.
2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重.在这种情况下,则坏球必
在未经交换的A4或B3之中.这是因为已交换的B2、A2、A3个球并未影响轻重,可见这三只球都是好球.
以上说明A4或B3这其中有一个是坏球.这时候,只需要取A4或B3同标准球C1比较就行了.例如,取A4放在
天平的一端,取C1放在天平的另一端.这时称第三次.如果天平两边平衡,那么B3是坏球; 如果天平不平,那
么A4就是坏球 (这时A4重于C1).
3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻.在这种情况下,坏球必在
刚才交换过的A2、A3、B23球之中.这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4
或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是
A2、A3、B2都是好球.
以上说明A2、A3、B2中有一个是坏球.这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球.把
A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于
A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球.
智力IQ求解有十二个外表大小一模一样的球!但其中一个球的重量和其他十一个不一样,但不知道它比其他的球轻还是重!有一个天枰
有12个乒乓球 其中一个的重量和其他不同(但外表都一样) 其中11个球重量都是一样的 重量不同的球或轻或重 有一个天平
脑力测试有12个外表一样小球,其中有一个的重量与其它球不一样,但不知道这个球是重了还是轻了,现在想用一个天平称三次找出这
有十二个颜色形状大小均相同的球.其中有一个重量于其他的不一样,但不知是重是轻.给你一?F
有十二个球 其中一个重量不一样 而且不知道轻还是重 用天平怎么三次称出来?
有十个外表一模一样的金属球,其中有一个比其他九个轻,请问给你一个天平两次怎么找出那个轻的金属球?
十二个彩球,有一个重量和其他不一样,但不知是轻是重,用不显示重量的天平称三次,把它找出,如何找?
12个球,其中一个重量和其他11个不同,但不知比其他的轻还是重,要求仅仅用一天平,称三次把那个球挑出来
有十二个球,其中一球重量与其他球不一样,但不知道这个球轻还是重,让你用天平秤称三次,找出这个球.
有十二只乒乓球,用天平称三次要找出与其他十一只重量不等的球,且不知道这只球是比其他球轻还是重
有9个球,外表完全一垟,但其中8个重量相同,有1个比其他的都轻.请问用一架没有砝码的天平,至少需要称几次,才能找出那个轻
高智商智力题有12个乒乓球,其中1个重量与其他不同.一个无砝码天平,称三次,找出那个重量不同的球,并知道它比其他球轻还是