设集合A=[0,12),B=[12,1],函数f (x)=x+12,x∈A2(1−x),x∈B,若x0∈A,且
设集合A=[0,12),B=[12,1],函数f (x)=x+12,x∈A2(1−x),x∈B,若x0∈A,且
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
对于函数f(x)=ax^2+(b+1)x+b+1(a≠0),若存在x0∈R使f(x0)=x0,则称x0为f(x)的不动点
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=f(x),(x>0)或-f(x),(x0)或-f(
设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x
设函数f(x)=13x3−12(2a−1)x2+[a2−a−f′(a)]x+b,(a,b∈R)
已知函数f(x)=ax∧2+bx+1(a,b为实数),x∈R,F(x)={f(x)(x>0)/-f(x)(x0且f(x)
设集合A={x|x2+4x=0,x∈R}、B={x|x2+2(a+1)x+a2-1=0},若B是A的子集,求实数a的范围
已知函数f(x)=ln(1+e^x)-x(x∈R)有下列性质:"若x∈[a,b],则存在x0∈(a,b)
若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b)
设函数f(x)=x^3,x0在x=0处可导求a.b
设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0},若A∪B=B,求实数a的值.