作业帮 > 数学 > 作业

设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:16:23
设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
如题~
我好笨啊
推论:如果n哥方程,n个未知量的齐次线性方程组Ax=0存在非零解,则|A|=0
设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
|A|=0
证明:
设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0 仅有零解.
但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则 r < n,从而 |A|=0
设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~ 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=_________. 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|等于? 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=? 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,求|A|等于多少 设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解. 设A是m*n矩阵,B是n*s矩阵,x是列向量,证明:AB=O的充分必要条件是B的每一列都是齐次线性方程组AX=O的解 证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是 A,B均为四阶非零矩阵,B的列向量为齐次线性方程组AX=0的解,则|B|=?;又若A的伴随矩阵A*不等于零,则B的秩r( 向量组证明问题设A,B分别为m*r,r*n阶矩阵,且AB=0,求证(1)B的各列向量是齐次线性方程组AX=0的解(2)若 设A为mxn矩阵,B为nxs矩阵,证明AB=0的充分必要条件是B的每个列向量均为齐次线性方程组AX=0的解. 设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组