若a,b,c是正实数,求证(b+c)/2a+(c+a)/2b+(a+b)/2c>=2a/(b+c)+2b/(c+a)+2
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
已知a,b,c是实数,求证a*a+b*b+c*c>=ab+3b+2c
若a,b,c是正实数,求证(b+c)/2a+(c+a)/2b+(a+b)/2c>=2a/(b+c)+2b/(c+a)+2
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
已知a,b,c是正实数,满足a^2=b(b+c),b^2=c(c+a).证明:1/a+1/b=1/c
已知a,b,c是正数,求证:a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)
已知a,b,c是正数,求证a^(2a)b^(2b)c^(2c)≥a^(b+c)b^(c+a)c^(a+b).
..a b c为正,求证a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=1/2(a+b+c)
若a,b,c属于正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(a+c)+1/(a+b)
已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2
已知a,b,c是正数,求证 a^2(b)×b^(2b)×c^(2c)大于等于a^(a+b)×b^(a+c)×c^(a+b