已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 07:06:08
已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0)
1 求向量a与向量b的数量积用k表示的解析式f(k)
2 向量a能否和向量b垂直 能否平行?若不能则说明理由 若能 则求k值
3 求向量a与b夹角的最大值
1 求向量a与向量b的数量积用k表示的解析式f(k)
2 向量a能否和向量b垂直 能否平行?若不能则说明理由 若能 则求k值
3 求向量a与b夹角的最大值
由|ka+b|=根号3|a-kb|平方得到:k^2a^2+2kab+b^2=3(a^2-2kab+k^2b^2),
又|a|=1,|b|=1,
代入上式得到:k^2+2ka.b+1=3(1-2kab+k^2),即8ka.b=2+2k^2,
即a.b=(2+2k^2)/8k=(k^2+1)/4k,
(2)由于k>0,故a·b不=0,所以向量a和向量b不能垂直.
如果a,b平行,则a·b=(+/-)|a||b|
即(k^2+1)/4k=(+/-)1
k^2+1=(+/-)4k
k^2(-/+)4k+1=0
[k(-/+)2]^2=3
k(-/+)2=(+/-)根号3
又k>0,即k=2+根号3或2-根号3
(3)cos=a.b/(|a||b|)=(2+2k^2)/8k=1/(4k)+k/4>=2根号(1/4k*k/4)=2*1/4=1/2
所以,
又|a|=1,|b|=1,
代入上式得到:k^2+2ka.b+1=3(1-2kab+k^2),即8ka.b=2+2k^2,
即a.b=(2+2k^2)/8k=(k^2+1)/4k,
(2)由于k>0,故a·b不=0,所以向量a和向量b不能垂直.
如果a,b平行,则a·b=(+/-)|a||b|
即(k^2+1)/4k=(+/-)1
k^2+1=(+/-)4k
k^2(-/+)4k+1=0
[k(-/+)2]^2=3
k(-/+)2=(+/-)根号3
又k>0,即k=2+根号3或2-根号3
(3)cos=a.b/(|a||b|)=(2+2k^2)/8k=1/(4k)+k/4>=2根号(1/4k*k/4)=2*1/4=1/2
所以,
已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0)
已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0)
已知向量a=(cosa,sina) b=(cosb,sinb)且a b满足│ka+b│=根号3│a-kb│(k>0) 求
已知向量a=(cosa,sina,1) b=(cosb,sinb,1)且a b满足│ka+b│=根号3│a-kb│(k>
向量a=(cosa,sina),向量b=(cosb,sinb)且a与b满足|a-kb|=根号3|ka+b|(k>0)
设向量a=(cosa,sina),b=(cosb,sinb),且a和b满足|ka+b|=根号3|a-kb|(其中k>0)
已知向量a=(cosA,sinA),b=(cosB,sinB),且a,b满足|ka+b|=3~|a-kb|(k大于0)【
A=(cosa,sina),B=(cosb,sinb),A,B满足(kA+B)的模等于根号3倍(A-kB)的模,K>0,
已知向量a=(cosa,sina),b=(cosp,sinp)且a,b满足│ka+b│=根号3│a-kb│求K的取值范围
已知向量a=(cosa,sina),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=根号3 |a-kb|(k
已知向量a=(cosa,sina),b=(cosb,sinb),其中0大于a大于b大于π,若ka+b与a-kb的长度相等
已知向量a=(cosα,sinα) b=(cosβ,sinβ)且a ,b满足│ka+b│=根号3│a-kb│(k>0)