1、已知椭圆(X^2/A^2)+(Y^2/B^2)=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:45:59
1、已知椭圆(X^2/A^2)+(Y^2/B^2)=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆中心.求证:|OP|·|OQ|为定值
2、求证:等轴双曲线上任意一点到两渐近线的距离之积是常数.
2题尽量用参数方程
2、求证:等轴双曲线上任意一点到两渐近线的距离之积是常数.
2题尽量用参数方程
椭圆的参数方程为
x=acosβ,y=bsinβ
B1(0,b),B2(0,-b),M(acosβ,bsinβ)
B1M:y-b=b(1-sinβ)x/acosβ与X轴交点为
P(-acosβ/(1-sinβ),0)
同理可得:
Q (-acosβ/(1+sinβ),0)
|OP|·|OQ|=|acosβ/(1-sinβ)|·|acosβ/(1+sinβ)|
=a²
2)等轴双曲线的参数方程为
x=a·secβ,y=a·tanβ
等轴双曲线上任意一点P(a·secβ,a·tanβ)
到两条渐近线
x±y=0
的距离分别为D1=|a·secβ,a+tanβ|/√2
D2==|a·secβ,a-tanβ|/√2
D1·D2=a²/2
x=acosβ,y=bsinβ
B1(0,b),B2(0,-b),M(acosβ,bsinβ)
B1M:y-b=b(1-sinβ)x/acosβ与X轴交点为
P(-acosβ/(1-sinβ),0)
同理可得:
Q (-acosβ/(1+sinβ),0)
|OP|·|OQ|=|acosβ/(1-sinβ)|·|acosβ/(1+sinβ)|
=a²
2)等轴双曲线的参数方程为
x=a·secβ,y=a·tanβ
等轴双曲线上任意一点P(a·secβ,a·tanβ)
到两条渐近线
x±y=0
的距离分别为D1=|a·secβ,a+tanβ|/√2
D2==|a·secβ,a-tanβ|/√2
D1·D2=a²/2
1、已知椭圆(X^2/A^2)+(Y^2/B^2)=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与X轴
参数方程1、已知椭圆(X^2/A^2)+(Y^2/B^2)=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分
已知椭圆x^2/4+y^2=1上任意一点M(除短轴端点外)与短轴两端点B1,B2的连线分别与x轴关于P,Q两点,
已知椭圆x²/a²+y²/b²=1上任意一点M与短轴两端点B1,B2的连线分别于
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,
数学题--基础参数已知椭圆X^2/a^2 y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,Q
已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆短轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的
椭圆压轴题已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两焦点与短轴的一个端点连线构成一个等腰直角三角形,直
已知抛物线C:y^2=4x,若椭圆的左焦点及相应准线与抛物线C的焦点F和准线l分别重合,求椭圆短轴端点B与焦点F的连线段
已知椭圆x^2/a^2+y^2/b^2=1的一个焦点是(1,0)两个焦点与短轴一个端点构成等边三角
已知椭圆的中心在原点,它在X轴上一个焦点F与短轴两个端点B1,B2的连线互相垂直,且这个焦点与较近的长轴端点A的距离为根
椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平