正余弦定理试题?1,已知△ABC中,cosA=4/5 (a-2):b:(c+2)=1:2:3,判断△ABC形状2,证明(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:13:46
正余弦定理试题?
1,已知△ABC中,cosA=4/5 (a-2):b:(c+2)=1:2:3,判断△ABC形状
2,证明(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=0; cos2A/a^2-cos2B/b^2=1/a^2-1/b^2
1,已知△ABC中,cosA=4/5 (a-2):b:(c+2)=1:2:3,判断△ABC形状
2,证明(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=0; cos2A/a^2-cos2B/b^2=1/a^2-1/b^2
1.由(a-2):b:(c+2)=1:2:3设a-2=t,b=2t,c+2=3t,(t>0)
即:a=t+2,b=2t,c=3t-2
由余弦定理得:cosA=(b²+c²-a²)/(2bc)
所以:[(2t)²+(3t-2)²-(t+2)²]/[2*(2t)*(3t-2)]=4/5
解得:t=4
则:a=6,b=8,c=10,
有:a²+b²=c²
所以△ABC是直角三角形,其中∠C是直角.
2(1)由余弦定理得:2bc=(b²+c²-a²)/cosA,2ac=(a²+c²-b²)/cosB,
所以:(a²-b²-c²)tanA+(a²-b²+c²)tanB
=-(b²+c²-a²)sinA/cosA+(a²+c²-b²)sinB/cosB
=-2bcsinA+2acsinB
=-2(bcsinA-acsinB)
又由三角形面积公式得:
S=bcsinA/2=acsinB/2
即:bcsinA-acsinB=0
所以:(a²-b²-c²)tanA+(a²-b²+c²)tanB=0
2(2)cos2A/a²-cos2B/b²
=(1-2sin²A)/a²-(1-2sin²B)/b²
=1/a²-1/b²+2(sin²B/b²-sin²A/a²) (*)
由正弦定理得:a/sinA=b/sinB,即:sin²A/a²=sin²B/b²
则:sin²B/b²-sin²A/a²=0
所以由(*)可证得:
cos2A/a²-cos2B/b²=1/a²-1/b²
再问: 顺便问下 这道怎么做? 当X
即:a=t+2,b=2t,c=3t-2
由余弦定理得:cosA=(b²+c²-a²)/(2bc)
所以:[(2t)²+(3t-2)²-(t+2)²]/[2*(2t)*(3t-2)]=4/5
解得:t=4
则:a=6,b=8,c=10,
有:a²+b²=c²
所以△ABC是直角三角形,其中∠C是直角.
2(1)由余弦定理得:2bc=(b²+c²-a²)/cosA,2ac=(a²+c²-b²)/cosB,
所以:(a²-b²-c²)tanA+(a²-b²+c²)tanB
=-(b²+c²-a²)sinA/cosA+(a²+c²-b²)sinB/cosB
=-2bcsinA+2acsinB
=-2(bcsinA-acsinB)
又由三角形面积公式得:
S=bcsinA/2=acsinB/2
即:bcsinA-acsinB=0
所以:(a²-b²-c²)tanA+(a²-b²+c²)tanB=0
2(2)cos2A/a²-cos2B/b²
=(1-2sin²A)/a²-(1-2sin²B)/b²
=1/a²-1/b²+2(sin²B/b²-sin²A/a²) (*)
由正弦定理得:a/sinA=b/sinB,即:sin²A/a²=sin²B/b²
则:sin²B/b²-sin²A/a²=0
所以由(*)可证得:
cos2A/a²-cos2B/b²=1/a²-1/b²
再问: 顺便问下 这道怎么做? 当X
正余弦定理试题?1,已知△ABC中,cosA=4/5 (a-2):b:(c+2)=1:2:3,判断△ABC形状2,证明(
学到了正弦余弦定理,已知三角形ABC中,cosA=5分之4,且(a-2):b:(c+2)=1:2:3,判断三角形的形状.
余弦定理:在△ABC中,已知c=2,a=3,b=4,则cosA=
一道正余弦定理的问题在三角形ABC中,已知a(bcosB-ccosC)=(b^2-c^2)cosA,试判断三角形ABC的
有关正余弦定理的问题在三角形ABC中,内角A,B,C的对比a,b,c,已知(cosA-2cosC)/cosB=(2c-a
已知△abc中,cosA=4/5,且(a-2):b:(c+2)=1:2:3,是判断三角形的形状
已知A(-2,1)B(3,-2)C(2,5)求△ABC面积 用正余弦定理求
三角函数证明题,已知三角形ABC中cosA=0.8,(a-2):b:(c+2)=1:2:3,判断三角形的形状
余弦定理的题在三角形ABC中,已知sinBxsinc=cosA分之2 试判断此三角形的形状
在三角形ABC中,cosA=4/5 (a-2):b:(c+2)=1:2:3,判断三角形形状
余弦定理)sinA=tanB,a=b(1+cosA) 证明角A=C17.在三角形ABC中 已知2a=b+c Sin平方A
正余弦定理 解三角形已知△ABC里 A>B>C,A=2C,b=4,a+c=8,求a、c的长.