p为奇质数,整数a,b满足(b,p)=1,a≠b.若存在正整数k≥1,非负整数l,使得p^k||(a-b),p^l||n
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:56:07
p为奇质数,整数a,b满足(b,p)=1,a≠b.若存在正整数k≥1,非负整数l,使得p^k||(a-b),p^l||n,则p^(k+l)||(a^n-b^n)
符号p^k||n表示质数p与非负整数k满足p^k|jn,但p^(k+1)不整除n
符号p^k||n表示质数p与非负整数k满足p^k|jn,但p^(k+1)不整除n
(b,p)=1
p|(a-b)
所以(a,p)=1
且有x, (x,p)=1使bx=M*p^k+1
p^k||(a-b)
所以p^k||(a-b)x=ax-bx=ax-M*p^k-1
p^k|ax-1令ax=N*p^k+1, 显然p不|(N-M)
x^n(a^n-b^n)=(ax)^n-(bx)^n=(Np^k+1)^n-(Mp^k+1)^n
=.[Cni(N^i-M^i)p^(ik)].i=1~n
分析每项中p的指数最小值,应该就是i=1时Cn1(N-M)p^k, 显然p^(k+l)||Cn1(N-M)p^k
下面只需要证明i>1的每项中p的指数大于l+k
i>1时Cni(N^i-M^i)p^(ik)中Cni=n!/i!(n-i)!,
设n!中p的指数为A,i!中为B, (n-i)!中为C则
A=求和{[n/p^j] j=1~max}
B=求和{[i/p^j] j=1~max}
C=求和{[(n-i)/p^j] j=1~max}
显然各求和的分项无条件地有:A分项 》=B分项+C分项.
如果 (i,p)=1时
当j=1~l, [n/p^j]=[i/p^j]+[(n-i)/p^j] +1-----------整数被拆分为两个非整数,整数部分减少1
则A-B-C>=l p^(l+k) k[Q(rp-1)-1]-r >= k[2Qr-1]-r >=kQr-r >=0
如果i=Q*p^r r>=l 显然
p|(a-b)
所以(a,p)=1
且有x, (x,p)=1使bx=M*p^k+1
p^k||(a-b)
所以p^k||(a-b)x=ax-bx=ax-M*p^k-1
p^k|ax-1令ax=N*p^k+1, 显然p不|(N-M)
x^n(a^n-b^n)=(ax)^n-(bx)^n=(Np^k+1)^n-(Mp^k+1)^n
=.[Cni(N^i-M^i)p^(ik)].i=1~n
分析每项中p的指数最小值,应该就是i=1时Cn1(N-M)p^k, 显然p^(k+l)||Cn1(N-M)p^k
下面只需要证明i>1的每项中p的指数大于l+k
i>1时Cni(N^i-M^i)p^(ik)中Cni=n!/i!(n-i)!,
设n!中p的指数为A,i!中为B, (n-i)!中为C则
A=求和{[n/p^j] j=1~max}
B=求和{[i/p^j] j=1~max}
C=求和{[(n-i)/p^j] j=1~max}
显然各求和的分项无条件地有:A分项 》=B分项+C分项.
如果 (i,p)=1时
当j=1~l, [n/p^j]=[i/p^j]+[(n-i)/p^j] +1-----------整数被拆分为两个非整数,整数部分减少1
则A-B-C>=l p^(l+k) k[Q(rp-1)-1]-r >= k[2Qr-1]-r >=kQr-r >=0
如果i=Q*p^r r>=l 显然
p为奇质数,整数a,b满足(b,p)=1,a≠b.若存在正整数k≥1,非负整数l,使得p^k||(a-b),p^l||n
设整数n≥3,集合P={1,2,3,…,n},A,B是P的两个非空子集.记an为所有满足A中的最大数小于B中的最小数的集
若事件A、B满足P(AB)=P(非A∩非B),且P(A)=1/3,求P(B)
a,b为整数,/a-b/+(a+b)*(a+b)=p,p是质数,求出所有符合条件的a,b
设p为质数,证明:满足a2 =pb2的正整数a,b不存在.
概率论 P(B|A)+P(非B|非A)=1 求证A B 相互独立
证明:P为质数,a为整数,P不整除a,则(P,a)=1
若P(A)=0.5,P(B)=0.6,P(A|B)=0.8 求P(AB),P(A非B非),P(A-B)
电子层符号为K、L、M、N、O、P、Q,为什么不是A、B、C、D、E、F呢?
P(A)=0.5,P(B)=0.7,P(AB)=0.3,求 (1)P(非A非B) (2)P(A非B)
设P(A)=0.5,P(B)=0.7,P(AB)=0.3,求 (1)P(非A非B) (2)P(A非B)
p(x)为F上的不可约多项式,存在a0,使得p(a)=0,p(1/a)=0;证明任意b,如果p(b)=0,则p(1/b)