数学归纳法证明不等式(1/n+1)+(1/n+2)+.+(1/3n+1)>25/24
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 21:01:47
数学归纳法证明不等式(1/n+1)+(1/n+2)+.+(1/3n+1)>25/24
证明:n=1时,由 1/2+1/3+1/4 = 13/12 = 26/24 > 25/24知不等式成立.
现在设n = k的时候不等式成立,即 1/(k+1) + 1/(k+2) +...+1/(3k+1) > 25/24.①
则n = k+1时,
由 (3k+2)(3k+4) = (3k+3-1)(3k+3+1) = (3k+3)² - 1< (3k+3)²
知 {(3k+2)+(3k+4)}/{(3k+2)(3k+4)} > {(3k+2)+(3k+4)}/{ (3k+3)²}
即 1/(3k+2) + 1/(3k+4) > 2/(3k+3)
从而 1/(3k+2) +1/(3k+3) 1/(3k+4) > 3/(3k+3) = 1/(k+1) ②
因此有
1/(n+1)+1/(n+2)+...+1/(3n+1)
= 1/(k+2)+1/(k+3)+...+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
> 1/(k+2)+1/(k+3)+...+1/(3k+1) + 1/(k+1) .因为②
= 1/(k+1)+1/(k+2)+1/(k+3)+...+1/(3k+1)
> 25/24 .因为①
从而n=k+1时不等式成立.
因此由数学归纳法知原不等式对一切正整数n成立.
现在设n = k的时候不等式成立,即 1/(k+1) + 1/(k+2) +...+1/(3k+1) > 25/24.①
则n = k+1时,
由 (3k+2)(3k+4) = (3k+3-1)(3k+3+1) = (3k+3)² - 1< (3k+3)²
知 {(3k+2)+(3k+4)}/{(3k+2)(3k+4)} > {(3k+2)+(3k+4)}/{ (3k+3)²}
即 1/(3k+2) + 1/(3k+4) > 2/(3k+3)
从而 1/(3k+2) +1/(3k+3) 1/(3k+4) > 3/(3k+3) = 1/(k+1) ②
因此有
1/(n+1)+1/(n+2)+...+1/(3n+1)
= 1/(k+2)+1/(k+3)+...+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
> 1/(k+2)+1/(k+3)+...+1/(3k+1) + 1/(k+1) .因为②
= 1/(k+1)+1/(k+2)+1/(k+3)+...+1/(3k+1)
> 25/24 .因为①
从而n=k+1时不等式成立.
因此由数学归纳法知原不等式对一切正整数n成立.
数学归纳法证明不等式(1/n+1)+(1/n+2)+.+(1/3n+1)>25/24
用数学归纳法证明不等式:1n
用数学归纳法证明不等式“1/n+1+1/n+2+---+1/2n>13/24(n>2,n属于N*)的过程中
用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)> 13/24
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
数学归纳法证明 < {(n+1)/2 }的n 次方
数学归纳法证明不等式证明这个不等式 1/n + 1/(n+1) + 1/(n+2) +...+1/(n^2)>1 (n属
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
数学归纳法证不等式1/(n+1)+1/(n+2)+...+1/(3n+1)>1
用数学归纳法证明ln(n+1)